期刊论文详细信息
Movement Ecology
Adding structure to land cover – using fractional cover to study animal habitat use
Joerg Mueller2  Martin Wegmann3  Marco Heurich2  Bjoern Reineking1  Ned Horning5  Mirjana Bevanda4 
[1] Unité de recherche écosystèmes montagnards, Irstea, 2 rue de la Papeterie-BP 76, St-Martin-d’Hères 38402, France;Bavarian Forest National Park, Department of Research and Documentation, Freyunger Str. 2, Grafenau 94481, Germany;Department of Remote Sensing, Remote Sensing for Biodiversity Unit, University Wuerzburg, Oswald Kuelpe Weg 86, Wuerzburg 97074, Germany;Biogeographical Modelling, Bayreuth Center for Ecology and Environmental Research BayCEER, University of Bayreuth, Universitaetsstr. 30, Bayreuth 95447, Germany;American Museum for Natural History, Central Park West at 79th Street, New York 10024-5192, NY, USA
关键词: Mixed model;    Habitat selection;    Animal movement;    Land cover classification;    Remote sensing;    Fractional cover;   
Others  :  1132168
DOI  :  10.1186/s40462-014-0026-1
 received in 2014-06-10, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Linking animal movements to landscape features is critical to identify factors that shape the spatial behaviour of animals. Habitat selection is led by behavioural decisions and is shaped by the environment, therefore the landscape is crucial for the analysis. Land cover classification based on ground survey and remote sensing data sets are an established approach to define landscapes for habitat selection analysis.

We investigate an approach for analysing habitat use using continuous land cover information and spatial metrics. This approach uses a continuous representation of the landscape using percentage cover of a chosen land cover type instead of discrete classes. This approach, fractional cover, captures spatial heterogeneity within classes and is therefore capable to provide a more distinct representation of the landscape. The variation in home range sizes is analysed using fractional cover and spatial metrics in conjunction with mixed effect models on red deer position data in the Bohemian Forest, compared over multiple spatio–temporal scales.

Results

We analysed forest fractional cover and a texture metric within each home range showing that variance of fractional cover values and texture explain much of variation in home range sizes. The results show a hump–shaped relationship, leading to smaller home ranges when forest fractional cover is very homogeneous or highly heterogeneous, while intermediate stages lead to larger home ranges.

Conclusion

The application of continuous land cover information in conjunction with spatial metrics proved to be valuable for the explanation of home-range sizes of red deer.

【 授权许可】

   
2015 Bevanda et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303145458663.pdf 1238KB PDF download
Figure 3. 87KB Image download
Figure 2. 59KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Gaillard J-M, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, Van Moorter B: Habitat-performance relationships: finding the right metric at a given spatial scale. Philos Trans R Soc London, Ser B, Biol Sci 2010, 365(1550):2255-2265.
  • [2]Richard E, Said S, Hamann J-L, Gaillard J-M: Toward an identification of resources influencing habitat use in a multi-specific context. PloS one 2011, 6(12):29048.
  • [3]Gustafson E: Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1998, 1:143-156.
  • [4]Johnson DH: The comparison of usage and availability measurements for evaluating resource preference. Ecology 1980, 61:65-71.
  • [5]Burt W: Territoriality and home range concepts as applied to mammals. J Mammalogy 1943, 24(3):346-352.
  • [6]Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith Ja, Swenson GW: Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 2007, 210(Pt 2):181-186.
  • [7]Tomkiewicz SM, Fuller MR, Kie JG, Bates KK: Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc London, Ser B 2010, 365(1550):2163-2176.
  • [8]Boyce M, Mao J, Merrill E, Fortin D: Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience 2003, 10(4):421-431.
  • [9]Nilsen E, Herfindal I, Linnell J: Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience 2005, 12(1):68-75.
  • [10]Saïd S, Gaillard J-M, Widmer O, Débias F, Bourgoin G, Delorme D, Roux C: What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 2009, 118(9):1299-1306.
  • [11]Tufto J, Andersen R, Linnell J: Habitat use and ecological correlates of home range size in a small cervid: the roe deer. J Animal Ecol 1996, 65(6):715-724.
  • [12]Godvik IMR, Loe LE, Vik JO, Veiberg VO, Langvatn R, Mysterud A: Temporal scales, trade-offs, and functional responses in red deer habitat selection. Ecology 2009, 90(3):699-710.
  • [13]Torres RT, Virgós E, Santos Ja, Linnell JDC, Fonseca C: Habitat use by sympatric red and roe deer in a Mediterranean ecosystem. Animal Biol 2012, 62(3):351-366.
  • [14]Massé A, Côté SD: Linking habitat heterogeneity to space use by large herbivores at multiple scales: From habitat mosaics to forest canopy openings. Forest Ecol Manage 2012, 285:67-76.
  • [15]Börger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T: An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am Naturalist 2006, 168(4):471-485.
  • [16]Rivrud IM, Loe LE, Mysterud A: How does local weather predict red deer home range size at different temporal scales? J Animal Ecol 2010, 79(6):1280-1295.
  • [17]Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C: Global land cover mapping from MODIS: algorithms and early results. Remote Sensing Environ 2002, 83(1-2):287-302.
  • [18]Asner GP, Heidebrecht KB: Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing mulitspectral and hyperspectral observations. Int J Remote Sensing 2002, 23(19):3939-3958.
  • [19]DeFries R, Hansen M, Townshend JRG, Janetos AC, Loveland TR: A new global 1 km data set of percent tree cover derived from remote sensing. Global Change Biol 2000, 6:247-254.
  • [20]DiMiceli CM, Carroll ML, Sohlberg RA, Huang C, Hansen MC, Townshend JRG: Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 M Spatial Resolution for Data Years Beginning Day 65, 2000 - 2010, Collection 5 Percent Tree Cover . University of Maryland, College Park, MD, USA; 2011.
  • [21]Debeljak M, Dzeroski S, Jerine K, Kobler A, Adamic M: Habitat suitability modelling for red deer (Cer6us elaphus L.) in South-central Slovenia with classification trees. Ecol Modell 2001, 138:321-330.
  • [22]Fischer HS, Winter S, Lohberger E, Jehl H, Fischer A: Improving transboundary maps of potential natural vegetation using statistical modeling based on environmental predictors. Folia Geobotanica 2013, 48(2):115-135.
  • [23]Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P: The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 2008, 17(12):2979-3001.
  • [24]Lausch A, Heurich M, Fahse L: Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol Indicators 2013, 31:73-81.
  • [25]Heurich M: Berücksichtigung von Tierschutzaspekten beim Fang und der Markierung von Wildtieren. In Internationale Fachtagung zu Fragen Von Verhaltenskunde, Tierhaltung und Tierschutz. 2011, 142–158.
  • [26]Stache A, Löttker P, Heurich M: Red deer telemetry: dependency of the position acquisition rate and accuracy of GPS collars on the structure of a temperate forest dominated by European beech. Silva Gabreta 2012, 18(1):35-48.
  • [27]Worton B: Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70:164-168.
  • [28]Calenge C: The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell 2006, 197(3-4):516-519.
  • [29]Kernohan BJ, Gitzen RA, Millspaugh JJ: Analysis of animal space use and movements. In Radio Tracking and Animal Populations . Edited by Millspaugh JJ, Marzluff J. Academic Press, San Diego, California, USA; 2001:126-164.
  • [30]Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T: Effects of sampling regime on the mean and variance of home range size estimates. J Animal Ecol 2006, 75(6):1393-1405.
  • [31]Breiman L: Random forests. Machine Learning 2001, 45(1):5-32.
  • [32]Hansen MC, DeFries RS, Townshend JRG, Sohlberg R, Dimiceli C, Carroll M: Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data. Remote Sensing Environ 2002, 83(1-2):303-319.
  • [33]Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg Ra: Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 2003, 7(10):1-15.
  • [34]Hayes DJ, Cohen WB, Sader Sa, Irwin DE: Estimating proportional change in forest cover as a continuous variable from multi-year MODIS data. Remote Sensing Env 2008, 112(3):735-749.
  • [35]Haralick R, Shanmugam K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybernetics 1973, 3(6):610-621.
  • [36]Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Marquéz JRG, Gruber B, Lafourcade B, Leitao PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S: Carré G: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36:27-46.
  • [37]Bates D, Maechler M, Bolker B: lme4: Linear mixed-effects models using S4 classes. R package version 0.92011.
  • [38]Tremblay A, Ransijn J: LMERConvenienceFunctions: A suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functions. R package version 1.6.8.32011.
  • [39]Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM: Mixed Effects Models and Extensions in Ecology with R: Springer; 2009.
  • [40]Development Core Team R: R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing; 2013.
  • [41]Hijmans RJ: raster: Geographic data analysis and modeling; 2013.
  • [42]Pau G, Oles A, Smith M, Sklyar O, Huber W: EBImage - Image processing toolbox for R. R package version 4.2.12013.
  • [43]Liaw A, Wiener M: Classification and regression by random forest. R News 2002, 2(3):18-22.
  • [44]Albon SD, Langvatn R: Plant phenology and the benefits of migration in a temperate ungulate. Oikos 1992, 65:502-513.
  • [45]Owen-Smith N, Fryxell JM, Merrill EH: Foraging theory upscaled: the behavioural ecology of herbivore movement. Philos Trans R Soc London, Ser B, Biol Sci 2010, 365(1550):2267-2278.
  • [46]van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A: What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Animal Ecol 2011, 80(4):771-785.
  • [47]Bevanda M, Fronhofer EA, Heurich M, Müller J, Reineking B: Landscape configuration is a major determinant of home range size variation; 2014. in prep.
  • [48]Anderson LO, Shimabukuro YE, Arai E: Cover: Multitemporal fraction images derived from Terra MODIS data for analysing land cover change over the Amazon region. Int J Remote Sensing 2005, 26(11):2251-2257.
  • [49]Herold M, Mayaux P, Woodcock CE, Baccini A, Schmullius C: Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing Env 2008, 112(5):2538-2556.
  文献评价指标  
  下载次数:67次 浏览次数:28次