期刊论文详细信息
Respiratory Research
Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction
Natascha Sommer1  Norbert Weissmann1  Gholam A Dehghani2  S Mostafa Shid-Moosavi2  Bakytbek Egemnazarov1  Friedrich Grimminger1  Werner Seeger1  Ralph T Schermuly1  Hossein A Ghofrani1  Farzaneh Ketabchi2 
[1]Justus-Liebig-University Giessen, University of Giessen & Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Medical Clinic II/IV/V, Aulweg 130, 35392 Giessen, Germany
[2]School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
关键词: hypoxic pulmonary vasoconstriction;    nitric oxide;    acidosis;    hypercapnia;    hypoxia;   
Others  :  796754
DOI  :  10.1186/1465-9921-13-7
 received in 2011-10-24, accepted in 2012-01-31,  发布年份 2012
PDF
【 摘 要 】

Background

Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined.

Method

We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability.

Results

In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W.

Conclusion

Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The increase of sustained HPV and endothelial permeability in hypoxic hypercapnia without acidosis was iNOS dependent.

【 授权许可】

   
2012 Ketabchi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706004029674.pdf 708KB PDF download
Figure 10. 54KB Image download
Figure 9. 49KB Image download
Figure 8. 46KB Image download
Figure 7. 72KB Image download
Figure 6. 50KB Image download
Figure 5. 81KB Image download
Figure 4. 78KB Image download
Figure 3. 78KB Image download
Figure 2. 49KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med 2000, 342:1334-1349.
  • [2]Zilberberg MD, Epstein SK: Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med 1998, 157:1159-1164.
  • [3]Wildman MJ, Sanderson C, Groves J, Reeves BC, Ayres J, Harrison D, Young D, Rowan K: Predicting mortality for patients with exacerbations of COPD and Asthma in the COPD and Asthma Outcome Study (CAOS). QJM 2009, 102:389-399.
  • [4]Euler USV, Liljestrand G: Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 1946, 12:301-320.
  • [5]Weissmann N, Winterhalder S, Nollen M, Voswinckel R, Quanz K, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F: NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. Am J Physiol Lung Cell Mol Physiol 2001, 280:L638-L645.
  • [6]Barer GR, Shaw JW: Pulmonary vasodilator and vasoconstrictor actions of carbon dioxide. J Physiol 1971, 213:633-645.
  • [7]Brimioulle S, Lejeune P, Vachiery JL, Leeman M, Melot C, Naeije R: Effects of acidosis and alkalosis on hypoxic pulmonary vasoconstriction in dogs. Am J Physiol 1990, 258:H347-H353.
  • [8]Baudouin SV, Evans TW: Action of carbon dioxide on hypoxic pulmonary vasoconstriction in the rat lung: evidence against specific endothelium-derived relaxing factor-mediated vasodilation. Crit Care Med 1993, 21:740-746.
  • [9]Sweeney M, Beddy D, Honner V, Sinnott B, O'Regan RG, McLoughlin P: Effects of changes in pH and CO2 on pulmonary arterial wall tension are not endothelium dependent. J Appl Physiol 1998, 85:2040-2046.
  • [10]Lynch F, Sweeney M, O'Regan RG, McLoughlin P: Hypercapnia-induced contraction in isolated pulmonary arteries is endothelium-dependent. Respir Physiol 2000, 121:65-74.
  • [11]Sweeney M, O'Regan RG, McLoughlin P: Effects of changes in pH and PCO2 on wall tension in isolated rat intrapulmonary arteries. Exp Physiol 1999, 84:529-539.
  • [12]Vankova M, Snetkov VA, Knock GA, Aaronson PI, Ward JP: Euhydric hypercapnia increases vasoreactivity of rat pulmonary arteries via. Cardiovasc Res 2005, 65:505-512.
  • [13]Ketabchi F, Egemnazarov B, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F, Moosavi SMS, Dehghani GA, Weissmann N, Sommer N: Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 2009, 297:L977-L983.
  • [14]Weissmann N, Sommer N, Schermuly RT, Ghofrani HA, Seeger W, Grimminger F: Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res 2006, 71:620-629.
  • [15]Ward JP, Robertson TP: The role of the endothelium in hypoxic pulmonary vasoconstriction. Exp Physiol 1995, 80:793-801.
  • [16]Walmrath D, Schneider T, Pilch J, Grimminger F, Seeger W: Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet 1993, 342:961-962.
  • [17]Spriestersbach R, Grimminger F, Weissmann N, Walmrath D, Seeger W: On-line measurement of nitric oxide generation in buffer-perfused rabbit lungs. J Appl Physiol 1995, 78:1502-1508.
  • [18]Adding LC, Agvald P, Artlich A, Persson MG, Gustafsson LE: Beta-adrenoceptor agonist stimulation of pulmonary nitric oxide production in the rabbit. Br J Pharmacol 1999, 126:833-839.
  • [19]Stromberg S, Lonnqvist PA, Persson MG, Gustafsson LE: Lung distension and carbon dioxide affect pulmonary nitric oxide formation in the anaesthetized rabbit. Acta Physiol Scand 1997, 159:59-67.
  • [20]Yamamoto Y, Nakano H, Ide H, Ogasa T, Takahashi T, Osanai S, Kikuchi K, Iwamoto J: Role of airway nitric oxide on the regulation of pulmonary circulation by carbon dioxide. J Appl Physiol 2001, 91:1121-1130.
  • [21]Lang JD, Chumley P, Eiserich JP, Estevez A, Bamberg T, Adhami A, Crow J, Freeman BA: Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 2000, 279:L994-1002.
  • [22]Yamaguchi K, Suzuki K, Naoki K, Nishio K, Sato N, Takeshita K, Kudo H, Aoki T, Suzuki Y, Miyata A, Tsumura H: Response of intra-acinar pulmonary microvessels to hypoxia, hypercapnic acidosis, and isocapnic acidosis. Circ Res 1998, 82:722-728.
  • [23]Zhu S, Basiouny KF, Crow JP, Matalon S: Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2000, 278:L1025-L1031.
  • [24]Naoki K, Yamaguchi K, Suzuki K, Kudo H, Nishio K, Sato N, Takeshita K, Suzuki Y, Tsumura H: Nitric oxide differentially attenuates microvessel response to hypoxia and hypercapnia in injured lungs. Am J Physiol 1999, 277:R181-R189.
  • [25]Weissmann N, Grimminger F, Walmrath D, Seeger W: Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol 1995, 100:159-169.
  • [26]Seeger W, Walmrath D, Menger M, Neuhof H: Increased lung vascular permeability after arachidonic acid and hydrostatic challenge. J Appl Physiol 1986, 61:1781-1789.
  • [27]Gordon JB, Rehorst-Paea LA, Hoffman GM, Nelin LD: Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets. Pediatr Res 1999, 46:735-741.
  • [28]Brimioulle S, Vachiery JL, Lejeune P, Leeman M, Melot C, Naeije R: Acid-base status affects gas exchange in canine oleic acid pulmonary edema. Am J Physiol 1991, 260:H1080-H1086.
  • [29]Marshall C, Lindgren L, Marshall BE: Metabolic and respiratory hydrogen ion effects on hypoxic pulmonary vasoconstriction. J Appl Physiol 1984, 57:545-550.
  • [30]Yamaguchi K, Takasugi T, Fujita H, Mori M, Oyamada Y, Suzuki K, Miyata A, Aoki T, Suzuki Y: Endothelial modulation of pH-dependent pressor response in isolated perfused rabbit lungs. Am J Physiol 1996, 270:H252-H258.
  • [31]Sweeney M, O'Regan RG, McLoughlin P: Effects of hypercapnia on steady state, phenylephrine-induced tension in isolated rings of rat pulmonary artery. Adv Exp Med Biol 1996, 410:463-469.
  • [32]Viles PH, Shepherd JT: Relationship between pH, Po2, and Pco2 on the pulmonary vascular bed of the cat. Am J Physiol 1968, 215:1170-1176.
  • [33]Fagan KA, Tyler RC, Sato K, Fouty BW, Morris KG, Huang PL, McMurtry IF, Rodman DM: Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am J Physiol 1999, 277:L472-L478.
  • [34]Barnard JW, Wilson PS, Moore TM, Thompson WJ, Taylor AE: Effect of nitric oxide and cyclooxygenase products on vascular resistance in dog and rat lungs. J Appl Physiol 1993, 74:2940-2948.
  • [35]Cremona G, Wood AM, Hall LW, Bower EA, Higenbottam T: Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man. J Physiol 1994, 481(Pt 1):185-195.
  • [36]Cremona G, Higenbottam T, Takao M, Hall L, Bower EA: Exhaled nitric oxide in isolated pig lungs. J Appl Physiol 1995, 78:59-63.
  • [37]Resta TC, O'Donaughy TL, Earley S, Chicoine LG, Walker BR: Unaltered vasoconstrictor responsiveness after iNOS inhibition in lungs from chronically hypoxic rats. Am J Physiol 1999, 276:L122-L130.
  • [38]Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N: Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 2008, 32:1639-1651.
  • [39]Chovanec M, Novotna J, Wilhelm J, Hampl V, Vizek M, Herget J: Hypercapnia attenuates hypoxic pulmonary hypertension by inhibiting lung radical injury. Physiol Res 2009, 58(Suppl 2):S79-S85.
  • [40]Dumas M, Dumas JP, Rochette L, Advenier C, Giudicelli JF: Comparison of the effects of nicorandil, pinacidil and nitroglycerin on hypoxic and hypercapnic pulmonary vasoconstriction in the isolated perfused lung of rat. Br J Pharmacol 1996, 117:633-638.
  • [41]Bouvet F, Dreyfuss D, Lebtahi R, Martet G, Le GD, Saumon G: Noninvasive evaluation of acute capillary permeability changes during high-volume ventilation in rats with and without hypercapnic acidosis. Crit Care Med 2005, 33:155-160.
  • [42]Haberkern CM, Bland RD: Effect of hypercapnia on net filtration of fluid in the lungs of awake newborn lambs. J Appl Physiol 1981, 51:423-427.
  • [43]Laffey JG, Engelberts D, Kavanagh BP: Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 2000, 161:141-146.
  • [44]Moore TM, Khimenko PL, Taylor AE: Restoration of normal pH triggers ischemia-reperfusion injury in lung by Na+/H+ exchange activation. Am J Physiol 1995, 269:H1501-H1505.
  • [45]Lang JD, Figueroa M, Sanders KD, Aslan M, Liu YL, Chumley P, Freeman BA: Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury. Am J Respir Crit Care Med 2005, 171:147-157.
  • [46]Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Melot C, Naeije R: Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med 2000, 162:209-215.
  • [47]Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clémenti E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F: Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 1998, 158:1831-1838.
  • [48]O'Brodovich HM, Stalcup SA, Pang LM, Lipset JS, Mellins RB: Bradykinin production and increased pulmonary endothelial permeability during acute respiratory failure in unanesthetized sheep. J Clin Invest 1981, 67:514-522.
  • [49]Pedoto A, Caruso JE, Nandi J, Oler A, Hoffmann SP, Tassiopoulos AK, McGraw DJ, Camporesi EM, Hakim TS: Acidosis stimulates nitric oxide production and lung damage in rats. Am J Respir Crit Care Med 1999, 159:397-402.
  • [50]Grunig E, Weissmann S, Ehlken N, Fijalkowska A, Fischer C, Fourme T, Galié N, Ghofrani A, Harrison RE, Huez S, Humbert M, Janssen B, Kober J, Koehler R, Machado RD, Mereles D, Naeije R, Olschewski H, Provencher S, Reichenberger F, Retailleau K, Rocchi G, Simonneau G, Torbicki A, Trembath R, Seeger W: Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 2009, 119:1747-1757.
  • [51]Beard JT, Newman JH, Loyd JE, Byrd BF III: Doppler estimation of changes in pulmonary artery pressure during hypoxic breathing. J Am Soc Echocardiogr 1991, 4:121-130.
  文献评价指标  
  下载次数:88次 浏览次数:27次