期刊论文详细信息
Retrovirology
Myocyte enhancer factor (MEF)-2 plays essential roles in T-cell transformation associated with HTLV-1 infection by stabilizing complex between Tax and CREB
Zafar K Khan3  Edward W Harhaj2  Divya Sagar3  Rashida Ginwala3  Linlin Gao1  Mohit Sehgal3  Alfonso Lavorgna2  Pooja Jain3 
[1] Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami 33136, FL, USA;Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore 21287, MD, USA;Department of Microbiology & Immunology and Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown 18902, PA, USA
关键词: Myocyte enhancer factor-2 (MEF-2);    Retroviral promoter;    LTR;    Tax;    HTLV-1;   
Others  :  1162835
DOI  :  10.1186/s12977-015-0140-1
 received in 2014-04-28, accepted in 2015-01-15,  发布年份 2015
PDF
【 摘 要 】

Background

The exact molecular mechanisms regarding HTLV-1 Tax-mediated viral gene expression and CD4 T-cell transformation have yet to be fully delineated. Herein, utilizing virus-infected primary CD4+ T cells and the virus-producing cell line, MT-2, we describe the involvement and regulation of Myocyte enhancer factor-2 (specifically MEF-2A) during the course of HTLV-1 infection and associated disease syndrome.

Results

Inhibition of MEF-2 expression by shRNA and its activity by HDAC9 led to reduced viral replication and T-cell transformation in correlation with a heightened expression of MEF-2 in ATL patients. Mechanistically, MEF-2 was recruited to the viral promoter (LTR, long terminal repeat) in the context of chromatin, and constituted Tax/CREB transcriptional complex via direct binding to the HTLV-1 LTR. Furthermore, an increase in MEF-2 expression was observed upon infection in an extent similar to CREB (known Tax-interacting transcription factor), and HATs (p300, CBP, and p/CAF). Confocal imaging confirmed MEF-2 co-localization with Tax and these proteins were also shown to interact by co-immunoprecipitation. MEF-2 stabilization of Tax/CREB complex was confirmed by a novel promoter-binding assay that highlighted the involvement of NFAT (nuclear factor of activated T cells) in this process via Tax-mediated activation of calcineurin (a calcium-dependent serine-threonine phosphatase). MEF-2-integrated signaling pathways (PI3K/Akt, NF-κB, MAPK, JAK/STAT, and TGF-β) were also activated during HTLV-1 infection of primary CD4+ T cells, possibly regulating MEF-2 activity.

Conclusions

We demonstrate the involvement of MEF-2 in Tax-mediated LTR activation, viral replication, and T-cell transformation in correlation with its heightened expression in ATL patients through direct binding to DNA within the HTLV-1 LTR.

【 授权许可】

   
2015 Jain et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413081757266.pdf 2278KB PDF download
Figure 9. 92KB Image download
Figure 8. 68KB Image download
Figure 7. 80KB Image download
Figure 6. 91KB Image download
Figure 5. 91KB Image download
Figure 4. 93KB Image download
Figure 3. 54KB Image download
Figure 2. 65KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Gallo RC: The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005, 2:17.
  • [2]Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, et al.: Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 1985, 2:407-10.
  • [3]Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, et al.: HTLV-I associated myelopathy, a new clinical entity. Lancet 1986, 1:1031-2.
  • [4]Palutke M, Patt DJ, Weise R, Varadachari C, Wylin RF, Bishop CR, et al.: T cell leukemia–lymphoma in young adults. Am J Clin Pathol 1977, 68:429-39.
  • [5]Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC: Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 1980, 77:7415-9.
  • [6]Takatsuki K: Discovery of adult T-cell leukemia. Retrovirology 2005, 2:16.
  • [7]Edlich RF, Arnette JA, Williams FM: Global epidemic of human T-cell lymphotropic virus type-I (HTLV-I). J Emerg Med 2000, 18:109-19.
  • [8]Hayashi D, Kubota R, Takenouchi N, Nakamura T, Umehara F, Arimura K, et al.: Accumulation of human T-lymphotropic virus type I (HTLV-I)-infected cells in the cerebrospinal fluid during the exacerbation of HTLV-I-associated myelopathy. J Neurovirol 2008, 14:459-63.
  • [9]Schechter GP, Whang-Peng J, McFarland W: Circulation of donor lymphocytes after blood transfusion in man. Blood 1977, 49:651-6.
  • [10]Uchiyama T: Human T cell leukemia virus type I (HTLV-I) and human diseases. Annu Rev Immunol 1997, 15:15-37.
  • [11]Brady J, Jeang KT, Duvall J, Khoury G: Identification of p40x-responsive regulatory sequences within the human T-cell leukemia virus type I long terminal repeat. J Virol 1987, 61:2175-81.
  • [12]Felber BK, Paskalis H, Kleinman-Ewing C, Wong-Staal F, Pavlakis GN: The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 1985, 229:675-9.
  • [13]Rosen CA, Sodroski JG, Haseltine WA: Location of cis-acting regulatory sequences in the human T-cell leukemia virus type I long terminal repeat. Proc Natl Acad Sci U S A 1985, 82:6502-6.
  • [14]Doi K, Wu X, Taniguchi Y, Yasunaga J, Satou Y, Okayama A, et al.: Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood 2005, 106:1048-53.
  • [15]Kiyokawa T, Seiki M, Imagawa K, Shimizu F, Yoshida M: Identification of a protein (p40x) encoded by a unique sequence pX of human T-cell leukemia virus type I. Gann 1984, 75:747-51.
  • [16]Sodroski JG, Rosen CA, Haseltine WA: Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells. Science 1984, 225:381-5.
  • [17]Pandya D, Rahman S, Wigdahl B, Khan ZK, Jain P: New insights into the pathogenesis, diagnosis and treatment of human T-cell leukemia virus type 1-induced disease. Futur Virol 2007, 2:481-93.
  • [18]Matsuoka M, Jeang KT: Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007, 7:270-80.
  • [19]Beimling P, Moelling K: Direct interaction of CREB protein with 21 bp Tax-response elements of HTLV-ILTR. Oncogene 1992, 7:257-62.
  • [20]Paca-Uccaralertkun S, Zhao LJ, Adya N, Cross JV, Cullen BR, Boros IM, et al.: In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax. Mol Cell Biol 1994, 14:456-62.
  • [21]Zhao LJ, Giam CZ: Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci U S A 1992, 89:7070-4.
  • [22]Adya N, Giam CZ: Distinct regions in human T-cell lymphotropic virus type I tax mediate interactions with activator protein CREB and basal transcription factors. J Virol 1995, 69:1834-41.
  • [23]Barnhart MK, Connor LM, Marriott SJ: Function of the human T-cell leukemia virus type 1 21-base-pair repeats in basal transcription. J Virol 1997, 71:337-44.
  • [24]Lenzmeier BA, Giebler HA, Nyborg JK: Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Mol Cell Biol 1998, 18:721-31.
  • [25]Harrod R, Tang Y, Nicot C, Lu HS, Vassilev A, Nakatani Y, et al.: An exposed KID-like domain in human T-cell lymphotropic virus type 1 Tax is responsible for the recruitment of coactivators CBP/p300. Mol Cell Biol 1998, 18:5052-61.
  • [26]Harrod R, Kuo YL, Tang Y, Yao Y, Vassilev A, Nakatani Y, et al.: p300 and p300/cAMP-responsive element-binding protein associated factor interact with human T-cell lymphotropic virus type-1 Tax in a multi-histone acetyltransferase/activator-enhancer complex. J Biol Chem 2000, 275:11852-7.
  • [27]Jiang H, Lu H, Schiltz RL, Pise-Masison CA, Ogryzko VV, Nakatani Y, et al.: PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. Mol Cell Biol 1999, 19:8136-45.
  • [28]Tie F, Adya N, Greene WC, Giam CZ: Interaction of the human T-lymphotropic virus type 1 Tax dimer with CREB and the viral 21-base-pair repeat. J Virol 1996, 70:8368-74.
  • [29]Nyborg JK, Egan D, Sharma N: The HTLV-1 Tax protein: revealing mechanisms of transcriptional activation through histone acetylation and nucleosome disassembly. Biochim Biophys Acta 2010, 1799:266-74.
  • [30]Trotter KW, Archer TK: Nuclear receptors and chromatin remodeling machinery. Mol Cell Endocrinol 2007, 265–266:162-7.
  • [31]Urnov FD, Wolffe AP: Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001, 20:2991-3006.
  • [32]Xu W: Nuclear receptor coactivators: the key to unlock chromatin. Biochem Cell Biol 2005, 83:418-28.
  • [33]Black BL, Olson EN: Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998, 14:167-96.
  • [34]Brand NJ: Myocyte enhancer factor 2 (MEF2). Int J Biochem Cell Biol 1997, 29:1467-70.
  • [35]McKinsey TA, Zhang CL, Olson EN: Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 2001, 11:497-504.
  • [36]Shore P, Sharrocks AD: The MADS-box family of transcription factors. Eur J Biochem 1995, 229:1-13.
  • [37]Li M, Linseman DA, Allen MP, Meintzer MK, Wang X, Laessig T, et al.: Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J Neurosci 2001, 21:6544-52.
  • [38]McKinsey TA, Zhang CL, Olson EN: MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 2002, 27:40-7.
  • [39]Ornatsky OI, McDermott JC: MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem 1996, 271:24927-33.
  • [40]Pan F, Ye Z, Cheng L, Liu JO: Myocyte enhancer factor 2 mediates calcium-dependent transcription of the interleukin-2 gene in T lymphocytes: a calcium signaling module that is distinct from but collaborates with the nuclear factor of activated T cells (NFAT). J Biol Chem 2004, 279:14477-80.
  • [41]Youn HD, Sun L, Prywes R, Liu JO: Apoptosis of T cells mediated by Ca2 + −induced release of the transcription factor MEF2. Science 1999, 286:790-3.
  • [42]Esau C, Boes M, Youn HD, Tatterson L, Liu JO, Chen J: Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J Exp Med 2001, 194:1449-59.
  • [43]Han A, Pan F, Stroud JC, Youn HD, Liu JO, Chen L: Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2. Nature 2003, 422:730-4.
  • [44]Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ: Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997, 386:296-9.
  • [45]Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD: BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 1997, 16:7054-66.
  • [46]Katsarou K, Tsitoura P, Georgopoulou U: MEK5/ERK5/mef2: a novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochim Biophys Acta 1813, 2011:1854-62.
  • [47]Quinn ZA, Yang CC, Wrana JL, McDermott JC: Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucleic Acids Res 2001, 29:732-42.
  • [48]Yang SH, Galanis A, Sharrocks AD: Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 1999, 19:4028-38.
  • [49]Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, et al.: Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999, 19:21-30.
  • [50]Nakamura K, Johnson GL: PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 2003, 278:36989-92.
  • [51]Zhao M, Liu Y, Bao M, Kato Y, Han J, Eaton JW: Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. Arch Biochem Biophys 2002, 400:199-207.
  • [52]Daury L, Busson M, Tourkine N, Casas F, Cassar-Malek I, Wrutniak-Cabello C, et al.: Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts. Oncogene 2001, 20:7998-8008.
  • [53]Platanias LC: Map kinase signaling pathways and hematologic malignancies. Blood 2003, 101:4667-79.
  • [54]Suzuki S, Singhirunnusorn P, Mori A, Yamaoka S, Kitajima I, Saiki I, et al.: Constitutive Activation of TAK1 by HTLV-1 Tax-dependent Overexpression of TAB2 Induces Activation of JNK-ATF2 but Not IKK-NF-κB. J Biol Chem 2007, 282:25177-81.
  • [55]Cox DM, Du M, Marback M, Yang EC, Chan J, Siu KW, et al.: Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem 2003, 278:15297-303.
  • [56]Han J, Molkentin JD: Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. Trends Cardiovasc Med 2000, 10:19-22.
  • [57]Kasler HG, Victoria J, Duramad O, Winoto A: ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol Cell Biol 2000, 20:8382-9.
  • [58]Lu J, McKinsey TA, Nicol RL, Olson EN: Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 2000, 97(8):4070-5.
  • [59]Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N, et al.: Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem 2000, 275:18534-40.
  • [60]Yang C-C, Ornatsky OI, McDermott JC, Cruz TF, Prody CA: Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 1998, 26:4771-7.
  • [61]Gruffat H, Manet E, Sergeant A: MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep 2002, 3:141-6.
  • [62]Liu S, Liu P, Borras A, Chatila T, Speck SH: Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J 1997, 16:143-53.
  • [63]McDonald C, Karstegl CE, Kellam P, Farrell PJ: Regulation of the Epstein-Barr virus Zp promoter in B lymphocytes during reactivation from latency. J Gen Virol 2010, 91:622-9.
  • [64]Harhaj EW, Good L, Xiao G, Sun SC: Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene 1999, 18:1341-9.
  • [65]Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P: Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009, 86:1205-16.
  • [66]Jain P, Manuel SL, Khan ZK, Ahuja J, Quann K, Wigdahl B: DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 2009, 83:10908-21.
  • [67]Yamano Y, Cohen CJ, Takenouchi N, Yao K, Tomaru U, Li HC, et al.: Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J Exp Med 2004, 199:1367-77.
  • [68]Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L: The HTLV-1 Tax interactome. Retrovirology 2008, 5:76.
  • [69]Rahman S, Quann K, Pandya D, Singh S, Khan ZK, Jain P: HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter. PLoS One 2012, 7:e34490.
  • [70]Alefantis T, Jain P, Ahuja J, Mostoller K, Wigdahl B: HTLV-1 Tax nucleocytoplasmic shuttling, interaction with the secretory pathway, extracellular signaling, and implications for neurologic disease. J Biomed Sci 2005, 12:961-74.
  • [71]Bosselut R, Lim F, Romond PC, Frampton J, Brady J, Ghysdael J: Myb protein binds to multiple sites in the human T cell lymphotropic virus type 1 long terminal repeat and transactivates LTR-mediated expression. Virology 1992, 186:764-9.
  • [72]van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, van der Nagel R, et al.: MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 2006, 114(4):298-308.
  • [73]Good L, Maggirwar SB, Harhaj EW, Sun SC: Constitutive dephosphorylation and activation of a member of the nuclear factor of activated T cells, NF-AT1, in Tax-expressing and type I human T-cell leukemia virus-infected human T cells. J Biol Chem 1997, 272:1425-8.
  • [74]Good L, Maggirwar SB, Sun SC: Activation of the IL-2 gene promoter by HTLV-I tax involves induction of NF-AT complexes bound to the CD28-responsive element. EMBO J 1996, 15:3744-50.
  • [75]Rivera I, Harhaj EW, Sun SC: Involvement of NF-AT in type I human T-cell leukemia virus Tax-mediated Fas ligand promoter transactivation. J Biol Chem 1998, 273:22382-8.
  • [76]Potthoff MJ, Olson EN: MEF2: a central regulator of diverse developmental programs. Development 2007, 134:4131-40.
  • [77]Easley R, Carpio L, Guendel I, Klase Z, Choi S, Kehn-Hall K, et al.: Human T-lymphotropic virus type 1 transcription and chromatin-remodeling complexes. J Virol 2010, 84(9):4755-68.
  • [78]Verdin E, Dequiedt F, Kasler HG: Class II histone deacetylases: versatile regulators. Trends Genet 2003, 19:286-93.
  • [79]Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, et al.: Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 2004, 24:8374-85.
  • [80]Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E, et al.: The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 2002, 21:2682-91.
  • [81]Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M, et al.: The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 2003, 278:16059-72.
  • [82]Liu F, Dowling M, Yang XJ, Kao GD: Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004, 279:34537-46.
  • [83]Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C: Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 2004, 15:2804-18.
  • [84]Hook SS, Orian A, Cowley SM, Eisenman RN: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci 2002, 99:13425-30.
  • [85]Li X, Song S, Liu Y, Ko S-H, Kao H-Y: Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem 2004, 279:34201-8.
  • [86]Bakin RE, Jung MO: Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J Biol Chem 2004, 279:51218-25.
  • [87]Mori N, Morishita M, Tsukazaki T, Giam C-Z, Kumatori A, Tanaka Y, et al.: Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood 2001, 97:2137-44.
  • [88]Clocchiatti A, Florean C, Brancolini C: Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 2011, 15:1833-46.
  • [89]Han A, He J, Wu Y, Liu JO, Chen L: Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 2005, 345:91-102.
  • [90]Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, et al.: MEF-2 function is modified by a novel co-repressor. MITR EMBO J 1999, 18:5085-98.
  • [91]Simonis N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS, et al.: Host-pathogen interactome mapping for HTLV-1 and −2 retroviruses. Retrovirology 2012, 9:26.
  • [92]Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, et al.: HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012, 3:406.
  • [93]Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ, et al.: Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 2008, 9:603-12.
  • [94]Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, et al.: The transcriptional landscape of [alpha][beta] T cell differentiation. Nat Immunol 2013, 14:619-32.
  • [95]Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD: Regulation of lymphoid versus myeloid fate ‘choice’ by the transcription factor Mef2c. Nat Immunol 2009, 10:289-96.
  • [96]Blaeser F, Ho N, Prywes R, Chatila TA: Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem 2000, 275:197-209.
  • [97]Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, et al.: The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol 2005, 25:6990-7004.
  • [98]McKinsey TA, Zhang CL, Olson EN: Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 2000, 97:14400-5.
  • [99]Youn HD, Chatila TA, Liu JO: Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 2000, 19:4323-31.
  • [100]Youn HD, Liu JO: Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000, 13:85-94.
  • [101]Harhaj NS, Sun S-C, Harhaj EW: Activation of NF-κB by the human T cell leukemia virus type I tax oncoprotein is associated with ubiquitin-dependent relocalization of IκB kinase. J Biol Chem 2007, 282:4185-92.
  • [102]Lindholm PF, Marriott SJ, Gitlin SD, Bohan CA, Brady JN: Induction of nuclear NF-kappa B DNA binding activity after exposure of lymphoid cells to soluble tax1 protein. New Biol 1990, 2:1034-43.
  • [103]Charoenthongtrakul S, Zhou Q, Shembade N, Harhaj NS, Harhaj EW: Human T cell leukemia virus type 1 Tax inhibits innate antiviral signaling via NF-kappaB-dependent induction of SOCS1. J Virol 2011, 85:6955-62.
  • [104]Harhaj NS, Janic B, Ramos JC, Harrington WJ Jr, Harhaj EW: Deregulated expression of CD40 ligand in HTLV-I infection: distinct mechanisms of downregulation in HTLV-I-transformed cell lines and ATL patients. Virology 2007, 362:99-108.
  • [105]Grant C, Jain P, Nonnemacher M, Flaig KE, Irish B, Ahuja J, et al.: AP-1-directed human T cell leukemia virus type 1 viral gene expression during monocytic differentiation. J Leukoc Biol 2006, 80:640-50.
  • [106]Lavorgna A, Harhaj EW: An RNA interference screen identifies the Deubiquitinase STAMBPL1 as a critical regulator of human T-cell leukemia virus type 1 tax nuclear export and NF-kappaB activation. J Virol 2012, 86:3357-69.
  • [107]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-8.
  • [108]Manuel SL, Sehgal M, Connolly J, Makedonas G, Khan ZK, Gardner J, et al.: Lack of recall response to Tax in ATL and HAM/TSP patients but not in asymptomatic carriers of human T-cell leukemia virus type 1. J Clin Immunol 2013, 33:1223-39.
  • [109]Manuel SL, Sehgal M, Khan ZK, Goedert JJ, Betts MR, Jain P: An altered maturation and adhesion phenotype of dendritic cells in diseased individuals compared to asymptomatic carriers of human T cell leukemia virus type 1. AIDS Res Hum Retrovir 2013, 29:1273-85.
  • [110]Harhaj EW, Harhaj NS, Grant C, Mostoller K, Alefantis T, Sun SC, et al.: Human T cell leukemia virus type I Tax activates CD40 gene expression via the NF-kappa B pathway. Virology 2005, 333:145-58.
  • [111]Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL: Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 1998, 273:14285-92.
  文献评价指标  
  下载次数:8次 浏览次数:8次