期刊论文详细信息
Molecular Pain
CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy
Rajesh Khanna1  Fletcher A White6  Michael R Vasko6  Samy O Meroueh5  Ruizhong Wang2  Matthew S Ripsch3  Bo Wang5  May Khanna4  Michael R Due4  Andrew D Piekarz2 
[1] Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, IN, 46202, USA;Department of Pharmacology and Toxicology, 950 West Walnut Street, Indianapolis, IN, 46202, USA;Department of Anesthesia, 950 West Walnut Street, Indianapolis, IN, 46202, USA;Department of Biochemistry and Molecular Biology, Health Information and Translational Sciences Building, 410 W. 10th Street, HS 5000, Indianapolis, IN, 46202, USA;Department of Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Health Information and Translational Sciences Building, 410 W. 10th Street, HS 5000, Indianapolis, IN, 46202, USA;Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, 950 West Walnut Street, Indianapolis, IN, 46202, USA
关键词: Molecular dynamics;    Calcium channels;    AIDS therapy-induced chronic pain;    Nociception;    Excitability;    Peptide;   
Others  :  863803
DOI  :  10.1186/1744-8069-8-54
 received in 2012-04-09, accepted in 2012-07-02,  发布年份 2012
PDF
【 摘 要 】

Background

The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2) to bind to N-type voltage-activated calcium channels (CaV2.2) [Brittain et al. Nature Medicine 17:822–829 (2011)].

Results and discussion

Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K) that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion) observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP) release compared to vehicle control.

Conclusions

Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of action on the target.

【 授权许可】

   
2012 Piekarz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725063346944.pdf 3289KB PDF download
58KB Image download
208KB Image download
136KB Image download
102KB Image download
Figure 2. 72KB Image download
125KB Image download
132KB Image download
118KB Image download
【 图 表 】

Figure 2.

【 参考文献 】
  • [1]Cummins TR, Rush AM: Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2007, 7:1597-1612.
  • [2]Todorovic SM, Jevtovic-Todorovic V: T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 2011, 163:484-495.
  • [3]Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F: Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 2003, 105:159-168.
  • [4]Clozel JP, Ertel EA, Ertel SI: Discovery and main pharmacological properties of mibefradil (Ro 40–5967), the first selective T-type calcium channel blocker. J HypertensSuppl 1997, 15:S17-S25.
  • [5]Ertel SI, Ertel EA, Clozel JP: T-type Ca2+ channels and pharmacological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 1997, 11:723-739.
  • [6]Ertel SI, Clozel JP: Mibefradil (Ro 40–5967): the first selective T-type Ca2+ channel blocker. Expert OpinInvestig Drugs 1997, 6:569-582.
  • [7]Saegusa H, Matsuda Y, Tanabe T: Effects of ablation of N- and R-type Ca(2+) channels on pain transmission. Neurosci Res 2002, 43:1-7.
  • [8]Matthews EA, Bee LA, Stephens GJ, Dickenson AH: The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur J Neurosci 2007, 25:3561-3569.
  • [9]Cain SM, Snutch TP: Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin) 2010, 4:475-482.
  • [10]Wilson SM, Toth PT, Oh SB, Gillard SE, Volsen S, Ren D, et al.: The status of voltage-dependent calcium channels in alpha 1E knock-out mice. J Neurosci 2000, 20:8566-8571.
  • [11]Fang Z, Park CK, Li HY, Kim HY, Park SH, Jung SJ, et al.: Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. J BiolChem 2007, 282:4757-4764.
  • [12]Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R: An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated Ca2+ channels. J BiolChem 2009, 284:31375-31390.
  • [13]Chi XX, Schmutzler BS, Brittain JM, Hingtgen CM, Nicol GD, Khanna R: Regulation of N-type voltage-gated calcium (CaV2.2) channels and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci 2009, 23:4351-4362.
  • [14]Wang Y, Brittain JM, Wilson SM, Khanna R: Emerging roles of collapsin response mediator proteins (CRMPs) as regulators of voltage-gated calcium channels and synaptic transmission. Communicative & Integrative Biology 2010, 3:1-4.
  • [15]Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, et al.: Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca(2+) channel complex. Nat Med 2011, 17:822-829.
  • [16]Peng J, Xu J: RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 2011, 79(Suppl 10):161-171.
  • [17]Wilson SM, Brittain JM, Piekarz AD, Ballard CJ, Ripsch MS, Cummins TR, et al.: Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel-CRMP-2 signaling complex. Channels (Austin) 2011, 5:449-456.
  • [18]Joseph EK, Chen X, Khasar SG, Levine JD: Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 2004, 107:147-158.
  • [19]Berger JR, Levy RM: The neurologic complications of human immunodeficiency virus infection. Med Clin North Am 1993, 77:1-23.
  • [20]Dalakas MC: Peripheral neuropathy and antiretroviral drugs. J PeripherNervSyst 2001, 6:14-20.
  • [21]Hildebrand ME, Smith PL, Bladen C, Eduljee C, Xie JY, Chen L, et al.: A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain. Pain 2011, 152:833-843.
  • [22]Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, et al.: Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 2007, 27:3305-3316.
  • [23]Metz AE, Jarsky T, Martina M, Spruston N: R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 2005, 25:5763-5773.
  • [24]Chevalier M, Lory P, Mironneau C, Macrez N, Quignard JF: T-type CaV3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations. Eur J Neurosci 2006, 23:2321-2329.
  • [25]Nelson MT, Todorovic SM, Perez-Reyes E: The role of T-type calcium channels in epilepsy and pain. Curr Pharm Des 2006, 12:2189-2197.
  • [26]Diochot S, Richard S, Valmier J: Diversity of voltage-gated calcium currents in large diameter embryonic mouse sensory neurons. Neuroscience 1995, 69:627-641.
  • [27]Hilaire C, Diochot S, Desmadryl G, Richard S, Valmier J: Toxin-resistant calcium currents in embryonic mouse sensory neurons. Neuroscience 1997, 80:267-276.
  • [28]Nakashima YM, Todorovic SM, Covey DF, Lingle CJ: The anesthetic steroid (+)-3alpha-hydroxy-5alpha-androstane-17beta-carbonitrile blocks N-, Q-, and R-type, but not L- and P-type, high voltage-activated Ca2+ current in hippocampal and dorsal root ganglion neurons of the rat. MolPharmacol 1998, 54:559-568.
  • [29]Baccei ML, Kocsis JD: Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons. J Neurophysiol 2000, 83:2227-2238.
  • [30]Hogan QH, McCallum JB, Sarantopoulos C, Aason M, Mynlieff M, Kwok WM, et al.: Painful neuropathy decreases membrane calcium current in mammalian primary afferent neurons. Pain 2000, 86:43-53.
  • [31]Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, et al.: n vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 2009, 145:184-195.
  • [32]Lirk P, Poroli M, Rigaud M, Fuchs A, Fillip P, Huang CY, et al.: Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. AnesthAnalg 2008, 107:673-685.
  • [33]Scott VE, Vortherms TA, Niforatos W, Swensen AM, Neelands T, Milicic I, et al.: A-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering hemodynamic function in rats. BiochemPharmacol 2012, 83:406-418.
  • [34]Perez-Reyes E: Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003, 83:117-161.
  • [35]Llinas RR: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 1988, 242:1654-1664.
  • [36]Huguenard JR: Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996, 329-348. doi:.
  • [37]Scroggs RS, Fox AP: Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 1992, 445:639-658.
  • [38]Nelson MT, Joksovic PM, Perez-Reyes E, Todorovic SM: The endogenous redox agent L-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J Neurosci 2005, 25:8766-8775.
  • [39]Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA: Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999, 19:1895-1911.
  • [40]Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR: A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 2003, 6:724-730.
  • [41]Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, et al.: Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005, 24:315-324.
  • [42]Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, et al.: Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 2007, 6:425-431.
  • [43]Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E, et al.: T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci 2009, 29:13106-13114.
  • [44]Bourinet E, Zamponi GW: Voltage gated calcium channels as targets for analgesics. Curr Top Med Chem 2005, 5:539-546.
  • [45]Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, et al.: Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008, 99:3151-3156.
  • [46]Weerasuriya A, Mizisin AP: The blood-nerve barrier: structure and functional significance. Methods MolBiol 2011, 686:149-173.
  • [47]Pathirathna S, Todorovic SM, Covey DF, Jevtovic-Todorovic V: 5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain. Pain 2005, 117:326-339.
  • [48]Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K, et al.: Upregulation of Ca(v)3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain 2010, 150:183-191.
  • [49]Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, et al.: TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. MolPharmacol 2011, 80:900-910.
  • [50]Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, et al.: Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 2009, 58:2656-2665.
  • [51]Yusaf SP, Goodman J, Pinnock RD, Dixon AK, Lee K: Expression of voltage-gated calcium channel subunits in rat dorsal root ganglion neurons. NeurosciLett 2001, 311:137-141.
  • [52]Murakami M, Nakagawasai O, Fujii S, Kameyama K, Murakami S, Hozumi S, et al.: Antinociceptive action of amlodipine blocking N-type Ca2+ channels at the primary afferent neurons in mice. Eur J Pharmacol 2001, 419:175-181.
  • [53]Wen XJ, Xu SY, Chen ZX, Yang CX, Liang H, Li H: The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology 2010, 85:295-300.
  • [54]Maggi CA, Giuliani S, Santicioli P, Tramontana M, Meli A: Effect of omega conotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinary bladder and peptide release from the rat spinal cord. Neuroscience 1990, 34:243-250.
  • [55]Evans AR, Nicol GD, Vasko MR: Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res 1996, 712:265-273.
  • [56]Wu ZZ, Cai YQ, Pan HL: A Functional Link Between T-type Calcium Channels and mu-Opioid Receptor Expression in Adult Primary Sensory Neurons. J Neurochem 2009, 109:867-878.
  • [57]Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, et al.: PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 2004, 7:939-946.
  • [58]Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, et al.: BKCa-Cav channel complexes mediate rapid and localized Ca2 + −activated K + signaling. Science 2006, 314:615-620.
  • [59]Scholz A, Gruss M, Vogel W: Properties and functions of calcium-activated K + channels in small neurones of rat dorsal root ganglion studied in a thin slice preparation. J Physiol 1998, 513:55-69.
  • [60]Zhang XL, Mok LP, Katz EJ, Gold MS: BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons. Eur J Neurosci 2010, 31:450-462.
  • [61]Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA: Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 1992, 9:1099-1115.
  • [62]Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, et al.: Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 1993, 123:949-962.
  • [63]Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, et al.: Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 1995, 15:6403-6418.
  • [64]Sakamoto J, Campbell KP: A monoclonal antibody to the beta subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain omega-conotoxin GVIA receptor. J BiolChem 1991, 266:18914-18919.
  • [65]Edmondson DG, Roth SY: Identification of protein interactions by far Western analysis. CurrProtoc Cell Biol 2001., 17(17.2)
  • [66]Schechtman D, Murriel C, Bright R, Mochly-Rosen D: Overlay method for detecting protein-protein interactions. Methods MolBiol 2003, 233:351-357.
  • [67]Wu Y, Li Q, Chen XZ: Detecting protein-protein interactions by Far western blotting. Nat Protoc 2007, 2:3278-3284.
  • [68]Hall RA: Protein-Protein Interactions, Methods and Application, Methods in Molecular Biology. In Studying protein-protein interactions via Blot overlay or Far Western Blot. 1st edition. Totowa, N.J: Humana Press; 2004:167-174.
  • [69]Jorgensen WL, Madura JD, Impey RW, Klein ML: Comparison of simple potential functions for simulating liquid water. J ChemPhys 1983, 79:10.
  • [70]Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, et al.: The Amber biomolecular simulation programs. J ComputChem 2005, 26:1668-1688.
  • [71]Ripsch MS, Ballard CJ, Khanna M, Hurley JH, White FA, Khanna R: A peptide uncoupling CRMP-2 from the presynaptic Ca2+channel complex demonstrates efficacy in animal models of migraine and AIDS therapy-induced neuropathy. Transl Neurosci 2012, 3:1-8.
  • [72]LaMotte RH, Friedman RM, Lu C, Khalsa PS, Srinivasan MA: Raised object on a planar surface stroked across the fingerpad: responses of cutaneous mechanoreceptors to shape and orientation. J Neurophysiol 1998, 80:2446-2466.
  • [73]Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH: Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 1999, 82:3347-3358.
  • [74]Zhang JM, Song XJ, LaMotte RH: Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 1999, 82:3359-3366.
  • [75]Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, et al.: Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003, 89:1588-1602.
  • [76]Ma C, LaMotte RH: Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 2005, 113:106-112.
  • [77]Coste B, Crest M, Delmas P: Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 2007, 129:57-77.
  • [78]Deo RC, Schmidt EF, Elhabazi A, Togashi H, Burley SK, Strittmatter SM: Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J 2004, 23:9-22.
  • [79]Pavlidis P, Noble WS: Matrix2png: a utility for visualizing matrix data. Bioinformatics 2003, 19:295-296.
  文献评价指标  
  下载次数:5次 浏览次数:13次