期刊论文详细信息
Retrovirology
Heterogeneous susceptibility of circulating SIV isolate capsids to HIV-interacting factors
Valérie Courgnaud1  Jean-Luc Battini1  Marc Sitbon1  João I Mamede1 
[1] Université Montpellier 1, 5 Bd Henry IV, 34967, Montpellier cedex 2, France
关键词: Lentiviral capsids;    Nup358/RanBP2;    Nup153;    TRIMCyp;    TRIM5α;    SIV;    HIV-2;    HIV-1;   
Others  :  1209097
DOI  :  10.1186/1742-4690-10-77
 received in 2013-04-29, accepted in 2013-07-05,  发布年份 2013
PDF
【 摘 要 】

Background

Many species of non-human primates in Africa are naturally infected by simian immunodeficiency viruses (SIV) and humans stand at the forefront of exposure to these viruses in Sub-Saharan Africa. Cross-species transmission and adaptation of SIV to humans have given rise to human immunodeficiency viruses (HIV-1 and HIV-2) on twelve accountable, independent occasions. However, the determinants contributing to a simian-to-human lasting transmission are not fully understood. Following entry, viral cores are released into the cytoplasm and become the principal target of host cellular factors. Here, we evaluated cellular factors likely to be involved in potential new SIV cross-species transmissions. We investigated the interactions of capsids from naturally circulating SIV isolates with both HIV-1 restricting (i.e. TRIM5 proteins) and facilitating (i.e. cyclophilin A and nucleopore-associated Nup358/RanBP2 and Nup153) factors in single-round infectivity assays that reproduce early stages of the viral life-cycle.

Results

We show that human TRIM5α is unlikely to prevent cross-species transmission of any SIV we tested and observed that the SIV CA-CypA interaction is a widespread but not a universal feature. Moreover, entry in the nucleus of different SIV appeared to follow pathways that do not necessarily recruit Nup358/RanBP2 or Nup153, and this regardless of their interaction with CypA. Nevertheless, we found that, like HIV-1, human-adapted HIV-2 infection was dependent on Nup358/RanBP2 and Nup153 interactions for optimal infection. Furthermore, we found that, unlike HIV CA, SIV CA did not require a direct interaction with the Cyp-like domain of Nup358/RanBP2 to carry out successful infection.

Conclusions

Circulating SIV present a variety of phenotypes with regard to CA-interacting restricting or facilitating factors. Altogether, we unveiled unidentified pathways for SIV CA, which could also be exploited by HIV in different cellular contexts, to drive entry into the nucleus. Our findings warrant a closer evaluation of other potential defenses against circulating SIV.

【 授权许可】

   
2013 Mamede et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602082052427.pdf 2525KB PDF download
Figure 7. 61KB Image download
Figure 6. 47KB Image download
Figure 5. 118KB Image download
Figure 4. 105KB Image download
Figure 3. 98KB Image download
Figure 2. 48KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sharp PM, Hahn BH: Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med 2011, 1(1):a006841.
  • [2]Aghokeng AF, Bailes E, Loul S, Courgnaud V, Mpoudi-Ngolle E, Sharp PM, Delaporte E, Peeters M: Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology 2007, 360(2):407-418.
  • [3]Jin MJ, Hui H, Robertson DL, Muller MC, Barre-Sinoussi F, Hirsch VM, Allan JS, Shaw GM, Sharp PM, Hahn BH: Mosaic genome structure of simian immunodeficiency virus from west African green monkeys. EMBO J 1994, 13(12):2935-2947.
  • [4]Salemi M, De Oliveira T, Courgnaud V, Moulton V, Holland B, Cassol S, Switzer WM, Vandamme AM: Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J Virol 2003, 77(13):7202-7213.
  • [5]Courgnaud V, Salemi M, Pourrut X, Mpoudi-Ngole E, Abela B, Auzel P, Bibollet-Ruche F, Hahn B, Vandamme AM, Delaporte E, et al.: Characterization of a novel simian immunodeficiency virus with a vpu gene from greater spot-nosed monkeys (Cercopithecus nictitans) provides new insights into simian/human immunodeficiency virus phylogeny. J Virol 2002, 76(16):8298-8309.
  • [6]Chen Z, Luckay A, Sodora DL, Telfer P, Reed P, Gettie A, Kanu JM, Sadek RF, Yee J, Ho DD, et al.: Human immunodeficiency virus type 2 (HIV-2) seroprevalence and characterization of a distinct HIV-2 genetic subtype from the natural range of simian immunodeficiency virus-infected sooty mangabeys. J Virol 1997, 71(5):3953-3960.
  • [7]Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, et al.: Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes [see comments]. Nature 1999, 397(6718):436-441.
  • [8]Hahn BH, Shaw GM, De Cock KM, Sharp PM: AIDS as a zoonosis: scientific and public health implications. Science 2000, 287(5453):607-614.
  • [9]Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemee V, Damond F, Robertson DL, Simon F: A new human immunodeficiency virus derived from gorillas. Nat Med 2009, 15(8):871-872.
  • [10]Aghokeng AF, Ayouba A, Mpoudi-Ngole E, Loul S, Liegeois F, Delaporte E, Peeters M: Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions. Infect Genet Evol 2010, 10:386-396.
  • [11]Peeters M, Courgnaud V, Abela B, Auzel P, Pourrut X, Bibollet-Ruche F, Loul S, Liegeois F, Butel C, Koulagna D, et al.: Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis 2002, 8(5):451-457.
  • [12]Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418(6898):646-650.
  • [13]Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451(7177):425-430.
  • [14]Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J: The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008, 3(4):245-252.
  • [15]Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474:658-661.
  • [16]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474:654-657.
  • [17]Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004, 427(6977):848-853.
  • [18]Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS, Emerman M: The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 2012, 11:194-204.
  • [19]McNatt MW, Zang T, Hatziioannou T, Bartlett M, Fofana IB, Johnson WE, Neil SJD, Bieniasz PD: Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog 2009, 5:e1000300.
  • [20]Sawyer SL, Wu LI, Emerman M, Malik HS: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 2005, 102(8):2832-2837.
  • [21]Sawyer SL, Emerman M, Malik HS: Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004, 2(9):E275.
  • [22]Stremlau M, Perron M, Welikala S, Sodroski J: Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 2005, 79(5):3139-3145.
  • [23]Keckesova Z, Ylinen LM, Towers GJ: The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci USA 2004, 101(29):10780-10785.
  • [24]Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J: TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 2004, 101(32):11827-11832.
  • [25]Yap MW, Nisole S, Lynch C, Stoye JP: Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 2004, 101(29):10786-10791.
  • [26]Takeuchi JS, Perche B, Migraine J, Mercier-Delarue S, Ponscarme D, Simon F, Clavel F, Labrosse B: High level of susceptibility to human TRIM5alpha conferred by HIV-2 capsid sequences. Retrovirology 2013, 10(1):50. BioMed Central Full Text
  • [27]Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J: Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 2006, 103(14):5514-5519.
  • [28]Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T: Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J 2008, 275(7):1540-1555.
  • [29]Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, et al.: TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472(7343):361-365.
  • [30]Braaten D, Aberham C, Franke EK, Yin L, Phares W, Luban J: Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilin A. J Virol 1996, 70(8):5170-5176.
  • [31]Li Y, Kar AK, Sodroski J: Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J Virol 2009, 83:10951-10962.
  • [32]Keckesova Z, Ylinen LM, Towers GJ: Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol 2006, 80(10):4683-4690.
  • [33]Sokolskaja E, Berthoux L, Luban J: Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol 2006, 80(6):2855-2862.
  • [34]Stremlau M, Song B, Javanbakht H, Perron M, Sodroski J: Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology 2006, 351(1):112-120.
  • [35]Nisole S, Lynch C, Stoye JP, Yap MW: A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 2004, 101(36):13324-13328.
  • [36]Sayah DM, Sokolskaja E, Berthoux L, Luban J: Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 2004, 430(6999):569-573.
  • [37]Brennan G, Kozyrev Y, Hu S-L: TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 2008, 105:3569-3574.
  • [38]Wilson SJ, Webb BL, Maplanka C, Newman RM, Verschoor EJ, Heeney JL, Towers GJ: Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 2008, 82(14):7243-7247.
  • [39]Börner K, Hermle J, Sommer C, Brown NP, Knapp B, Glass B, Kunkel J, Torralba G, Reymann J, Beil N, et al.: From experimental setup to bioinformatics: an RNAi screening platform to identify host factors involved in HIV-1 replication. Biotechnol J 2010, 5:39-49.
  • [40]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-926.
  • [41]Bushman FD, Malani N, Fernandes J, D'Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, König R, et al.: Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 2009, 5:e1000437.
  • [42]König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C-Y, Tu BP, De Jesus PD, Lilley CE, et al.: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135:49-60.
  • [43]Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, et al.: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4(5):495-504.
  • [44]Lewis P, Hensel M, Emerman M: Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 1992, 11(8):3053-3058.
  • [45]Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, et al.: Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 2010, 7:221-233.
  • [46]Yamashita M, Emerman M: Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006, 344(1):88-93.
  • [47]Yamashita M, Emerman M: Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 2004, 78(11):5670-5678.
  • [48]Yamashita M, Perez O, Hope TJ, Emerman M: Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 2007, 3(10):1502-1510.
  • [49]Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, Emiliani S, Rain JC, Benarous R, Cereseto A, et al.: Transportin-SR2 imports HIV into the nucleus. Curr Biol 2008, 18(16):1192-1202.
  • [50]Hutten S, Wälde S, Spillner C, Hauber J, Kehlenbach RH: The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci 2009, 122:1100-1110.
  • [51]Luban J: HIV-1 infection: going nuclear with TNPO3/Transportin-SR2 and integrase. Curr Biol 2008, 18(16):R710-713.
  • [52]Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, et al.: Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 2012, 7(9):e46037.
  • [53]Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, Li X, Dar MJ, Kewalramani VN, Engelman A: The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 2010, 84(1):397-406.
  • [54]Matreyek KA, Engelman A: The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011, 85:7818-7827.
  • [55]Woodward CL, Prakobwanakit S, Mosessian S, Chow SA: Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 2009, 83:6522-6533.
  • [56]Diaz-Griffero F: The Role of TNPO3 in HIV-1 Replication. Mol Biol Int 2012, 2012:868597.
  • [57]Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JAT, Chanda SK, Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JAT, Chanda SK, et al.: HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 2011, 7:e1001313.
  • [58]Valle-Casuso JC, Di Nunzio F, Yang Y, Reszka N, Lienlaf M, Arhel N, Perez P, Brass AL, Diaz-Griffero F: TNPO3 is required for HIV-1 replication after nuclear import but prior to integration and binds the HIV-1 core. J Virol 2012, 86(10):5931-5936.
  • [59]Di Nunzio F, Fricke T, Miccio A, Valle-Casuso JC, Perez P, Souque P, Rizzi E, Severgnini M, Mavilio F, Charneau P, et al.: Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 2013, 440(1):8-18.
  • [60]Zhang R, Mehla R, Chauhan A: Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus −1 preintegration complex (DNA). PLoS One 2010, 5:e15620.
  • [61]Galat A, Bua J: Molecular aspects of cyclophilins mediating therapeutic actions of their ligands. Cell Mol Life Sci 2010, 67:3467-3488.
  • [62]Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A: Structural and Functional Analysis of the C-Terminal Domain of Nup358/RanBP2. J Mol Biol 2013, 425(8):1318-1329.
  • [63]Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, et al.: HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 2011, 7(12):e1002439.
  • [64]Zhang F, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD: Antiretroviral potential of human tripartite motif-5 and related proteins. Virology 2006, 353:396-409.
  • [65]Lin T-Y, Emerman M: Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 2006, 3:70. BioMed Central Full Text
  • [66]Price AJ, Marzetta F, Lammers M, Ylinen LMJ, Schaller T, Wilson SJ, Towers GJ, James LC: Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 2009, 16:1036-1042.
  • [67]Kratovac Z, Virgen CA, Bibollet-Ruche F, Hahn BH, Bieniasz PD, Hatziioannou T: Primate lentivirus capsid sensitivity to TRIM5 proteins. J Virol 2008, 82(13):6772-6777.
  • [68]Takeuchi H, Ishii H, Kuwano T, Inagaki N, Akari H, Matano T: Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication. Retrovirology 2012, 9:3. BioMed Central Full Text
  • [69]Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP: Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 1996, 87(7):1285-1294.
  • [70]Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J: Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012, 7(8):1511-1522.
  • [71]Meehan AM, Guevera R, Morrison JH, Saenz DT, Mazuka H, Van Deursen J, Poeschla E: Analysis of HIV-1 requirements for Nup358/RanBP2 in conditional knockout cells reveals dispensability of C-terminal regions, including the cyclophilin domain. Retroviruses meeting, CSH 2012, 34.
  • [72]Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E: Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 1995, 270(23):14209-14213.
  • [73]Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U, et al.: A giant nucleopore protein that binds Ran/TC4. Nature 1995, 376(6536):184-188.
  • [74]Djoko CF, Wolfe ND, Aghokeng AF, Lebreton M, Liegeois F, Tamoufe U, Schneider BS, Ortiz N, Mbacham WF, Carr JK, et al.: Failure to detect simian immunodeficiency virus infection in a large Cameroonian cohort with high non-human primate exposure. EcoHealth 2012, 9(1):17-23.
  • [75]Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, Marx PA, Hahn BH, Sharp PM: Hybrid origin of SIV in chimpanzees. Science 2003, 300(5626):1713.
  • [76]Beer BE, Foley BT, Kuiken CL, Tooze Z, Goeken RM, Brown CR, Hu J, St Claire M, Korber BT, Hirsch VM: Characterization of novel simian immunodeficiency viruses from red-capped mangabeys from Nigeria (SIVrcmNG409 and -NG411). J Virol 2001, 75(24):12014-12027.
  • [77]Courgnaud V, Abela B, Pourrut X, Mpoudi-Ngole E, Loul S, Delaporte E, Peeters M: Identification of a new simian immunodeficiency virus lineage with a vpu gene present among different cercopithecus monkeys (C. mona, C. cephus, and C. nictitans) from Cameroon. J Virol 2003, 77(23):12523-12534.
  • [78]Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD: Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc Natl Acad Sci USA 2004, 101:10774-10779.
  • [79]Saenz DT, Teo W, Olsen JC, Poeschla EM: Restriction of feline immunodeficiency virus by Ref1, Lv1, and primate TRIM5alpha proteins. J Virol 2005, 79(24):15175-15188.
  • [80]Kaiser SM, Malik HS, Emerman M: Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 2007, 316(5832):1756-1758.
  • [81]Nakayama EE, Shioda T: TRIM5 and Species Tropism of HIV/SIV. Front Microbiol 2012, 3:13.
  • [82]Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR, Katzourakis A, Stoye JP, Taylor IA: Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 2010, 8(3):248-259.
  • [83]Braaten D, Franke EK, Luban J: Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol 1996, 70(7):4220-4227.
  • [84]Vajdos FF, Yoo S, Houseweart M, Sundquist WI, Hill CP: Crystal structure of cyclophilin A complexed with a binding site peptide from the HIV-1 capsid protein. Protein Sci 1997, 6(11):2297-2307.
  • [85]Yoo S, Myszka DG, Yeh C, McMurray M, Hill CP, Sundquist WI: Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol 1997, 269(5):780-795.
  • [86]Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997, 15(9):871-875.
  • [87]Courgnaud V, Pourrut X, Bibollet-Ruche F, Mpoudi-Ngole E, Bourgeois A, Delaporte E, Peeters M: Characterization of a novel simian immunodeficiency virus from guereza colobus monkeys (Colobus guereza) in Cameroon: a new lineage in the nonhuman primate lentivirus family. J Virol 2001, 75(2):857-866.
  • [88]Tsujimoto H, Cooper RW, Kodama T, Fukasawa M, Miura T, Ohta Y, Ishikawa K, Nakai M, Frost E, Roelants GE, et al.: Isolation and characterization of simian immunodeficiency virus from mandrills in Africa and its relationship to other human and simian immunodeficiency viruses. J Virol 1988, 62(11):4044-4050.
  • [89]Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ, Rabourdin-Combe C, Mehtali M, Moullier P, et al.: Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 2000, 7(19):1613-1623.
  • [90]Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ: Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 2008, 105(9):3557-3562.
  • [91]Ylinen LMJ, Price AJ, Rasaiyaah J, Hué S, Rose NJ, Marzetta F, James LC, Towers GJ: Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 2010, 6:e1001062.
  • [92]Miller AD, Rosman GJ: Improved retroviral vectors for gene transfer and expression. Biotechniques 1989, 7(9):980-982. 984–986, 989–990
  • [93]Lassaux A, Sitbon M, Battini JL: Residues in the murine leukemia virus capsid that differentially govern resistance to mouse Fv1 and human Ref1 restrictions. J Virol 2005, 79(10):6560-6564.
  • [94]Battini JL, Rasko JE, Miller AD: A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci USA 1999, 96(4):1385-1390.
  • [95]Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ, Ali RR: In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 2001, 8(21):1665-1668.
  • [96]Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K: Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001, 114(Pt 24):4557-4565.
  • [97]Saitoh N, Uchimura Y, Tachibana T, Sugahara S, Saitoh H, Nakao M: In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp Cell Res 2006, 312(8):1418-1430.
  • [98]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
  文献评价指标  
  下载次数:14次 浏览次数:2次