期刊论文详细信息
Respiratory Research
Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist
Brian O’Connor2  Peter J Barnes1  Brian R Leaker2 
[1] National Heart & Lung Institute, Imperial College, London SW3 6LY, UK;Respiratory Clinical Trials Ltd, 20 Queen Anne Street, London W1G 8HU, UK
关键词: Endotoxin;    Cystic fibrosis;    Severe asthma;    COPD;    CXCL1;    Chemokine receptor;    Neutrophil;   
Others  :  792209
DOI  :  10.1186/1465-9921-14-137
 received in 2013-08-28, accepted in 2013-11-12,  发布年份 2013
PDF
【 摘 要 】

Background

Inhaled lipopolysaccharide (LPS) induces a dose-dependent, acute neutrophilic response in the airways of healthy volunteers that can be quantified in induced sputum. Chemokines, such as CXCL1 and CXCL8, play an important role in neutrophilic inflammation in the lung through the activation of CXCR2 and small molecule antagonists of these receptors have now been developed. We investigated the effect of AZD8309, a CXCR2 antagonist, compared with placebo on LPS-induced inflammation measured in sputum of healthy volunteers.

Methods

Twenty healthy subjects were randomized in a double-blind placebo-controlled, cross-over study. AZD8309 (300 mg) or placebo was dosed twice daily orally for 3 days prior to challenge with inhaled LPS and induced sputum was collected 6 h later.

Results

Treatment with AZD8309 showed a mean 77% reduction in total sputum cells (p < 0.001) and 79% reduction in sputum neutrophils (p < 0.05) compared with placebo after LPS challenge. There was also a reduction in neutrophil elastase activity (p < 0.05) and CXCL1 (p < 0.05) and trends for reductions in sputum macrophages (47%), leukotriene B4 (39%) and CXCL8 (52%).

Conclusions

AZD8309 inhibited LPS-induced inflammation measured in induced sputum of normal volunteers, indicating that this treatment may be useful in the treatment of neutrophilic diseases of the airways, such as COPD, severe asthma and cystic fibrosis.

Trial registration

NCT00860821.

【 授权许可】

   
2013 Leaker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705025111490.pdf 520KB PDF download
Figure 5. 70KB Image download
Figure 4. 55KB Image download
Figure 3. 48KB Image download
Figure 2. 40KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Barnes PJ: New anti-inflammatory treatments for chronic obstructive pulmonary disease. Nat New Drug Disc 2013, 12:543-559.
  • [2]Barnes PJ: Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 2012, 129:48-59.
  • [3]Keatings VM, Collins PD, Scott DM, Barnes PJ: Differences in interleukin-8 and tumor necrosis factor-α in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 1996, 153:530-534.
  • [4]Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ: Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 2003, 123:1240-1247.
  • [5]Traves SL, Culpitt S, Russell REK, Barnes PJ, Donnelly LE: Elevated levels of the chemokines GRO-α and MCP-1 in sputum samples from COPD patients. Thorax 2002, 57:590-595.
  • [6]Qiu Y, Zhu J, Bandi V, Atmar R, Hattotuwa K, Guntapalli K, Jeffery P: Biopsy neutrophilia, chemokine and receptor gene expression in severe exacerbations of COPD. Am J Respir Crit Care Med 2003, 168:968-975.
  • [7]Jatakanon A, Uasaf C, Maziak W, Lim S, Chung KF, Barnes PJ: Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999, 160:1532-1539.
  • [8]Mackerness KJ, Jenkins GR, Bush A, Jose PJ: Characterisation of the range of neutrophil stimulating mediators in cystic fibrosis sputum. Thorax 2008, 63:614-620.
  • [9]Donnelly LE, Barnes PJ: Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 2006, 27:546-553.
  • [10]Gaggar A, Jackson PL, Noerager BD, O’Reilly PJ, McQuaid DB, Rowe SM, Clancy JP, Blalock JE: A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol 2008, 180:5662-5669.
  • [11]Xu X, Jackson PL, Tanner S, Hardison MT, Abdul RM, Blalock JE, Gaggar A: A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS One 2011, 6:e15781.
  • [12]Traves SL, Smith SJ, Barnes PJ, Donnelly LE: Increased migration of monocytes from COPD patients towards GROα is not mediated by an increase in CXCR2 receptor expression. Am J Resp Crit Care Med 2003, 165(Suppl):A82.
  • [13]Donnelly LE, Barnes PJ: Chemokine receptor CXCR2 antagonism to prevent airway inflammation. Drugs Future 2011, 36:465-472.
  • [14]Gernez Y, Tirouvanziam R, Chanez P: Neutrophils in chronic inflammatory airway diseases: can we target them and how? Eur Respir J 2010, 35:467-469.
  • [15]Holz O, Khalilieh S, Ludwig-Sengpiel A, Watz H, Stryszak P, Soni P, Tsai M, Sadeh J, Magnussen H: SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 2010, 35:564-570.
  • [16]Lazaar AL, Sweeney LE, MacDonald AJ, Alexis NE, Chen C, Tal-Singer R: SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol 2011, 72:282-293.
  • [17]Michel O, Nagy AM, Schroeven M, Duchateau J, Neve J, Fondu P, Sergysels R: Dose–response relationship to inhaled endotoxin in normal subjects. Am J Respir Crit Care Med 1997, 156:1157-1164.
  • [18]Nightingale JA, Rogers DF, Hart LA, Kharitonov SA, Chung KF, Barnes PJ: Effect of inhaled endotoxin on induced sputum in normal, atopic and asthmatic subjects. Thorax 1998, 53:563-571.
  • [19]Michel O: Systemic and local airways inflammatory response to endotoxin. Toxicology 2000, 152:25-30.
  • [20]Loh LC, Vyas B, Kanabar V, Kemeny DM, O’Connor BJ: Inhaled endotoxin in healthy human subjects: a dose-related study on systemic effects and peripheral CD4+ and CD8+ T cells. Respir Med 2006, 100:519-528.
  • [21]Goncalves AS, Appelberg R: The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol 2002, 55:585-591.
  • [22]Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Deno G, Bond R, Gonsiorek W, Billah MM, Fine JS, Hey JA: A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 2007, 322:486-493.
  • [23]Virtala R, Ekman AK, Jansson L, Westin U, Cardell LO: Airway inflammation evaluated in a human nasal lipopolysaccharide challenge model by investigating the effect of a CXCR2 inhibitor. Clin Exp Allergy 2012, 42:590-596.
  • [24]O’Grady NP, Preas HL, Pugin J, Fiuza C, Tropea M, Reda D, Banks SM, Suffredini AF: Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med 2001, 163:1591-1598.
  • [25]Traves SL, Smith SJ, Barnes PJ, Donnelly LE: Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leukoc Biol 2004, 76:441-450.
  • [26]Magnussen H, Watz H, Sauer M, Khanskaya I, Gann L, Stryszak P, Staudiger H, Sadeh H: Safety and efficacy of SCH527123, a novel CXCR2 antagonist, in patients with COPD. Eur Resp J 2010, 36(suppl):38S.
  • [27]Rennard SL, Dale DC, Donohue JF, Magnusseen H, Sutehrlans ER, Watyz H, Lu S, Strysak P, Rosenburg E, Staudinger H: CXCR2 Antagonist MK-7123 – a phase 2 proof of concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013, 187:A6071.
  • [28]Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P: Study investigators. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 2012, 42:1097-1103.
  • [29]Chapman RW, Phillips JE, Hipkin RW, Curran AK, Lundell D, Fine JS: CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther 2009, 121:55-68.
  • [30]Widdowson KL, Elliott JD, Veber DF, Nie H, Rutledge MC, McCleland BW, Xiang JN, Jurewicz AJ, Hertzberg RP, Foley JJ, Griswold DE, Martin L, Lee JM, White JR, Sarau HM: Evaluation of potent and selective small-molecule antagonists for the CXCR2 chemokine receptor. J Med Chem 2004, 47:1319-1321.
  • [31]Hansel TT, Barnes PJ: New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet 2009, 374:744-755.
  文献评价指标  
  下载次数:69次 浏览次数:24次