Radiation Oncology | |
Multi-institutional application of Failure Mode and Effects Analysis (FMEA) to CyberKnife Stereotactic Body Radiation Therapy (SBRT) | |
Marie Claire Cantone6  Laura Fariselli2  Giancarlo Beltramo1  Pietro Mancosu3  Tiziana Malatesta4  Irene Redaelli1  Cristina Vite7  Maria Luisa Fumagalli5  Anna Stefania Martinotti1  Elena De Martin5  Ivan Veronese6  | |
[1] Centro Diagnostico Italiano, Reparto Cyberknife, Milan, Italy;Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Unità di Radioterapia, Milan, Italy;Reparto di Radioterapia Oncologica, Istituto Clinico Humanitas, Milan, Italy;Ospedale San Giovanni Calibita Fatebenefratelli, UOC Fisica Sanitaria AFAR, Rome, Italy;Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, UO Direzione Sanitaria, Milan, Italy;Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milan 20133, Italy;Present address; Now at: Clinica Luganese, Lugano, Switzerland | |
关键词: Spine; Liver; Tracking; SBRT, CyberKnife; FMEA; | |
Others : 1228513 DOI : 10.1186/s13014-015-0438-0 |
|
received in 2015-01-16, accepted in 2015-06-09, 发布年份 2015 | |
【 摘 要 】
Background
A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres.
Methods
The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered.
Results
The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value.
Conclusions
The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.
【 授权许可】
2015 Veronese et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151016083227812.pdf | 1071KB | download | |
Fig. 1. | 200KB | Image | download |
【 图 表 】
Fig. 1.
【 参考文献 】
- [1]Benedict SH, Yenice KM, Followill D et al.. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010; 37:4078-101.
- [2]Clemente S, Nigro R, Oliviero C, Marchioni C, Esposito M, Giglioli FR, Mancosu P, Marino C, Russo S, Stasi M, Strigari L, Veronese I, Landoni V. Role of the technical aspects of hypofractionated radiation therapy treatment of prostate canver: a review. Int J Radiat Oncol, Biol, Phys. 2015; 91:182-95.
- [3]Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M. Stereotactic radiosurgery for treatment of brain metastases: a report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 2014; 190:521-32.
- [4]Kopp C, Theodurou M, Poullos N et al.. Fractionated radiotherapy in the treatment of pituitary adenomas. Strahlenther Onkol. 2013; 189:932-7.
- [5]Mancosu P, Castiglioni S, Reggiori G, Catalano M, Alongi F, Pellegrini C, Arcangeli S, Tozzi A, Lobefalo F, Fogliata A, Navarria P, Cozzi L, Scorsetti M. Stereotactic body radiation therapy for liver tumours using flattening filter free beam: dosimetric and technical considerations. Radiat Oncol. 2012; 7:16. BioMed Central Full Text
- [6]Ding C, Solberg TD, Hrycushko B, Xing L, Heinzerling J, Timmerman RD. Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: conventional vs robotic linac. Med Phys. 2013; 40:051705.
- [7]Foote M, Letourneau D, Hyde D, Massicotte E, Rampersaud R, Fehlings M, Fisher C, Lewis S, Macchia NL, Yu E, Laperriere NJ, Sahgal A. Technique for stereotactic body radiotherapy for spinal metastases. J Clin Neurosci. 2011; 18:276-9.
- [8]Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Medin PM, Mundt A, Mutic S, Palta JR, Thomadsen BR, Williamson JF, Yorke ED. A method for evaluating quality assurance needs in radiation therapy. Int J Radiat Oncol, Biol, Phys. 2008; 71:S170-3.
- [9]International Commission on Radiological Protection: Preventing Accidental Exposures from New External Beam Radiation Therapy Technologies, ICRP Publication 112, Annals of the ICRP 39 (4). Elsevier; 2009.
- [10]Ciocca M, Cantone MC, Veronese I, Cattani F, Pedroli G, Molinelli S, Vitolo V, Orecchia R. Application of failure mode and effect analysis to intraoperative radiation therapy using mobile electron linear accelerators. Int J Radiat Oncol, Biol, Phys. 2012; 21:e305-11.
- [11]Cantone MC, Ciocca M, Dionisi F, Fossati P, Lorentini S, Krengli M, Molinelli S, Orecchia R, Schwarz M, Veronese I, Vitolo V. Application of failure mode and effects analysis to treatment planning in scanner proton beam radiotherapy. Rad Oncology. 2013; 8:127. BioMed Central Full Text
- [12]Begnozzi L, Cantone MC, Longobardi B, Veronese I. Prospective approaches for risk analysis in modern radiotherapy: the Italian experience and the contribution of the medical physicists. Radioprotection. 2014; 49:43-7.
- [13]Broggi S, Cantone MC, Chiara A, Di Muzio N, Longobardi B, Mangili P, Veronese I. Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy. J Appl Clin Med Phys. 2013; 14:265-77.
- [14]Masini L, Donis L, Loi G, Mones E, Molina E, Bolchini C, Krengli M. Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator. Pract Radiat Oncol. 2014; 4:392-7.
- [15]Jones RT, Handsfield L, Read PW, Wilson DD, Van Ausdal R, Schlesinger DJ, Siebers JV, Chen Q. Safety and feasibility of STAT RAD: Improvement of a novel rapid tomotherapy-based radiation therapy workflow by failure mode and effects analysis. Pract Radiat Oncol. 2014.
- [16]European Commission. Radiation Protection N.181: General guidelines on risk management in external beam radiotherapy. ISSN 2315-2826; 2015.
- [17]Perks JR, Stanic S, Stern RL, Henk B, Nelson MS, Harse RD, Mathai M, Purdy JA, Valicenti RK, Siefkin AD, Chen AM. Failure mode and effect analysis for delivery of lung stereotactic body radiation therapy. Int J Radiat Oncol, Biol, Phys. 2012; 83:1324-9.
- [18]Ford EC, Gaudette R, Myers L, Vanderver B, Engineer L, Zellars R, Song DY, Wong J, Deweese TL. Evaluation of safety in a radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol, Biol, Phys. 2009; 74:852-8.
- [19]Scorsetti M, Signori C, Lattuada P et al.. Applying failure mode effects and criticality analysis in radiotherapy: Lessons learned and perspectives of enhancement. Radiother Oncol. 2010; 94:367-74.
- [20]Ford EC, Smith K, Terezakis S, Croog V, Gollamudi S, Gage I, Keck J, De Weese T, Sibley G. A streamlined failure mode and effects analysis. Med Phys. 2014; 41:061709.
- [21]Younge KC, Wang Y, Thompson J, Giovinazzo J, Finlay M, Sankreacha R. Practical Implementation of Failure Mode and Effects Analysis for Safety and Efficiency in Stereotactic Radiosurgery. Int J Radiat Oncol, Biol, Phys. 2015; 91:1003-8.
- [22]European Union (EU). Basic safety standards for protection against the dangers arising from exposure to ionizing radiation. Council Directive 2013/59/EURATOM. Available on http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=OJ:L:2014:013:TOC.
- [23]Gibbs IC. Spinal and paraspinal lesions: the role of stereotactic body radiotherapy. Front Radiat Ther Oncol. 2007; 20:407-14.
- [24]Martin AG, Cowley IR, Taylor BA, Cassoni AM, Landau DB, Plowman PN. (Stereotactic) radiosurgery XIX: spinal radiosurgery--two year experience in a UK centre. Br J Neurosurg. 2012; 26:53-8.
- [25]Marchetti M, De Martin E, Milanesi I, Fariselli L. Intradural extramedullary benign spinal lesions radiosurgery. Medium- to long-term results from a single institution experience. Acta Neurochir. 2013; 155:1215-22.
- [26]Jereczek-Fossa BA, Curigliano G, Orecchia O. Systemic therapies for non-metastatic prostate cancer: review of the literature. Onkologie. 2009; 32:359-63.
- [27]Vavassori A, Jereczek-Fossa BA, Beltramo G, De Cicco L, Fariselli L, Bianchi LC, Possanzini M, Bergantin A, De Cobelli O, Orecchia O. Image-guided robotic radiosurgery as salvage therapy for locally recurrent prostate cancer after external beam irradiation: retrospective feasibility study on six cases. Tumori. 2010; 96:71-5.
- [28]Bianchi LC, Marchetti M, Brait L, Bergantin A, Milanesi I, Broggi G, Fariselli L. Paragangliomas of head and neck: a treatment option with CyberKnife radiosurgery. Neurol Sci. 2009; 30:479-85.
- [29]Fariselli L, Marras C, De Santis M, Marchetti M, Milanesi I, Broggi G. CyberKnife radiosurgery as a first treatment for idiopathic trigeminal neuralgia. Neurosurgery. 2009; 64:A96-101.
- [30]Marchetti M, Bianchi S, Milanesi I, Bergantin A, Bianchi L, Broggi G, Fariselli L. Multisession radiosurgery for optic nerve sheath meningiomas-an effective option: preliminary results of a single-center experience. Neurosurgery. 2011; 69:1116-22.
- [31]Zamboglou C, Messmer MB, Becker G, Momm F. Stereotactic radiotherapy in the liver hilum. Basis for future studies. Strahlenther Onkol. 2012; 188:35-41.
- [32]Cyberknife system 9.6 treatment delivery manual, Accuray Incorporated.
- [33]Cyberknife system 9.6 treatment planning manual, Accuray Incorporated.