Molecular Neurodegeneration | |
Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics | |
Nico Fuhrmann2  Marcel V Alavi1  | |
[1] Department of Ophthalmology, University of California, San Francisco, 10 Koret Way, 94143-0730 San Francisco, CA, USA;Institut für Medizinische Genetik und Molekulare Medizin, Köln, Germany | |
关键词: Mitochondrial optic neuropathies; Mitochondrial quality control; Glutamate excitotoxicity; Retinal ganglion cells; Mitochondrial fusion; Oxidative stress; NMDA receptors; BNIP3; OPA3; OPA1; Glaucoma; LHON; DOA; | |
Others : 862177 DOI : 10.1186/1750-1326-8-32 |
|
received in 2013-06-19, accepted in 2013-09-16, 发布年份 2013 | |
【 摘 要 】
Mitochondrial quality control is fundamental to all neurodegenerative diseases, including the most prominent ones, Alzheimer’s Disease and Parkinsonism. It is accomplished by mitochondrial network dynamics – continuous fission and fusion of mitochondria. Mitochondrial fission is facilitated by DRP1, while MFN1 and MFN2 on the mitochondrial outer membrane and OPA1 on the mitochondrial inner membrane are essential for mitochondrial fusion. Mitochondrial network dynamics are regulated in highly sophisticated ways by various different posttranslational modifications, such as phosphorylation, ubiquitination, and proteolytic processing of their key-proteins. By this, mitochondria process a wide range of different intracellular and extracellular parameters in order to adapt mitochondrial function to actual energetic and metabolic demands of the host cell, attenuate mitochondrial damage, recycle dysfunctional mitochondria via the mitochondrial autophagy pathway, or arrange for the recycling of the complete host cell by apoptosis. Most of the genes coding for proteins involved in this process have been associated with neurodegenerative diseases. Mutations in one of these genes are associated with a neurodegenerative disease that originally was described to affect retinal ganglion cells only. Since more and more evidence shows that other cell types are affected as well, we would like to discuss the pathology of dominant optic atrophy, which is caused by heterozygous sequence variants in OPA1, in the light of the current view on OPA1 protein function in mitochondrial quality control, in particular on its function in mitochondrial fusion and cytochrome C release. We think OPA1 is a good example to understand the molecular basis for mitochondrial network dynamics.
【 授权许可】
2013 Alavi and Fuhrmann; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725011800641.pdf | 1507KB | download | |
93KB | Image | download | |
87KB | Image | download | |
111KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Cho DH, Nakamura T, Lipton SA: Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 2010, 67(20):3435-3447.
- [2]Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F: Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013, 4:102.
- [3]Grandemange S, Herzig S, Martinou JC: Mitochondrial dynamics and cancer. Semin Cancer Biol 2009, 19(1):50-56.
- [4]Wang W, Lu J, Zhu F, Wei J, Jia C, Zhang Y, Zhou L, Xie H, Zheng S: Pro-apoptotic and anti-proliferative effects of mitofusin-2 via Bax signaling in hepatocellular carcinoma cells. Med Oncol 2012, 29(1):70-76.
- [5]Gomes LC, Di Benedetto G, Scorrano L: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011, 13(5):589-598.
- [6]Hackenbrock CR: Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci U S A 1968, 61(2):598-605.
- [7]Yoneda M, Miyatake T, Attardi G: Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol 1994, 14(4):2699-2712.
- [8]Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al.: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008, 27(2):433-446.
- [9]Youle RJ, van der Bliek AM: Mitochondrial fission, fusion, and stress. Science 2012, 337(6098):1062-1065.
- [10]Chang CR, Blackstone C: Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 2010, 1201:34-39.
- [11]Rugarli EI, Langer T: Mitochondrial quality control: a matter of life and death for neurons. EMBO J 2012, 31(6):1336-1349.
- [12]Carelli V, Ross-Cisneros FN, Sadun AA: Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004, 23(1):53-89.
- [13]Kivlin JD, Lovrien EW, Bishop DT, Maumenee IH: Linkage analysis in dominant optic atrophy. Am J Hum Genet 1983, 35(6):1190-1195.
- [14]Kjer B, Eiberg H, Kjer P, Rosenberg T: Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol Scand 1996, 74(1):3-7.
- [15]Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, et al.: OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000, 26(2):211-215.
- [16]Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, et al.: Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000, 26(2):207-210.
- [17]Sadun AA: Mitochondrial optic neuropathies. J Neurol Neurosurg Psychiatry 2002, 72(4):423-425.
- [18]Quigley HA: Glaucoma. Lancet 2011, 377(9774):1367-1377.
- [19]Hoyt CS: Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 1980, 87(3):245-251.
- [20]Kline LB, Glaser JS: Dominant optic atrophy. The clinical profile. Arch Ophthalmol 1979, 97(9):1680-1686.
- [21]Cohn AC, Toomes C, Potter C, Towns KV, Hewitt AW, Inglehearn CF, Craig JE, Mackey DA: Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations. Am J Ophthalmol 2007, 143(4):656-662.
- [22]Heiduschka P, Schnichels S, Fuhrmann N, Hofmeister S, Schraermeyer U, Wissinger B, Alavi MV: Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci 2010, 51(3):1424-1431.
- [23]Fuhrmann N, Alavi MV, Bitoun P, Woernle S, Auburger G, Leo-Kottler B, Yu-Wai-Man P, Chinnery P, Wissinger B: Genomic rearrangements in OPA1 are frequent in patients with autosomal dominant optic atrophy. J Med Genet 2009, 46(2):136-144.
- [24]Marchbank NJ, Craig JE, Leek JP, Toohey M, Churchill AJ, Markham AF, Mackey DA, Toomes C, Inglehearn CF: Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J Med Genet 2002, 39(8):e47.
- [25]Puomila A, Huoponen K, Mantyjarvi M, Hamalainen P, Paananen R, Sankila EM, Savontaus ML, Somer M, Nikoskelainen E: Dominant optic atrophy: correlation between clinical and molecular genetic studies. Acta Ophthalmol Scand 2005, 83(3):337-346.
- [26]Fuhrmann N, Schimpf S, Kamenisch Y, Leo-Kottler B, Alexander C, Auburger G, Zrenner E, Wissinger B, Alavi MV: Solving a 50 year mystery of a missing OPA1 mutation: more insights from the first family diagnosed with autosomal dominant optic atrophy. Mol Neurodegener 2010, 5(1):25.
- [27]Amati-Bonneau P, Odent S, Derrien C, Pasquier L, Malthiery Y, Reynier P, Bonneau D: The association of autosomal dominant optic atrophy and moderate deafness may be due to the R445H mutation in the OPA1 gene. Am J Ophthalmol 2003, 136(6):1170-1171.
- [28]Li C, Kosmorsky G, Zhang K, Katz BJ, Ge J, Traboulsi EI: Optic atrophy and sensorineural hearing loss in a family caused by an R445H OPA1 mutation. Am J Med Genet A 2005, 138(3):208-211.
- [29]Payne M, Yang Z, Katz BJ, Warner JE, Weight CJ, Zhao Y, Pearson ED, Treft RL, Hillman T, Kennedy RJ, et al.: Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1. Am J Ophthalmol 2004, 138(5):749-755.
- [30]Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissiere A, Campos Y, Rivera H, de la Aleja JG, Carroccia R, et al.: OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain 2008, 131(Pt 2):338-351.
- [31]Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L, Schaefer AM, Griffiths PG, Ahlqvist K, Suomalainen A, Reynier P, et al.: Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 2008, 131(Pt 2):329-337.
- [32]Sarzi E, Angebault C, Seveno M, Gueguen N, Chaix B, Bielicki G, Boddaert N, Mausset-Bonnefont AL, Cazevieille C, Rigau V, et al.: The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain 2012, 135(Pt 12):3599-3613.
- [33]Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP: Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 2001, 109(6):584-591.
- [34]Ferre M, Amati-Bonneau P, Tourmen Y, Malthiery Y, Reynier P: eOPA1: an online database for OPA1 mutations. Hum Mutat 2005, 25(5):423-428.
- [35]MITOchondrial DYNamics variation pages. MITOchondrial DYNamics variation pages; http://mitodyn.org/home.php webcite
- [36]Almind GJ, Gronskov K, Milea D, Larsen M, Brondum-Nielsen K, Ek J: Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy. BMC Med Genet 2011, 12:49.
- [37]McQuibban GA, Lee JR, Zheng L, Juusola M, Freeman M: Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr Biol 2006, 16(10):982-989.
- [38]Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, Ruttiger L, Beck SC, Tonagel F, Pichler BJ, et al.: A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 2007, 130(Pt 4):1029-1042.
- [39]Song Z, Chen H, Fiket M, Alexander C, Chan DC: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 2007, 178(5):749-755.
- [40]Rahn JJ, Stackley KD, Chan SS: Opa1 is required for proper mitochondrial metabolism in early development. PLoS One 2013, 8(3):e59218.
- [41]Pesch UE, Leo-Kottler B, Mayer S, Jurklies B, Kellner U, Apfelstedt-Sylla E, Zrenner E, Alexander C, Wissinger B: OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum Mol Genet 2001, 10(13):1359-1368.
- [42]Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Toscano A, Musumeci O, Valentino ML, Caporali L, et al.: Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010, 133(Pt 3):771-786.
- [43]Schaaf CP, Blazo M, Lewis RA, Tonini RE, Takei H, Wang J, Wong LJ, Scaglia F: Early-onset severe neuromuscular phenotype associated with compound heterozygosity for OPA1 mutations. Mol Genet Metab 2011, 103(4):383-387.
- [44]Chen Y, Jia X, Wang P, Xiao X, Li S, Guo X, Zhang Q: Mutation survey of the optic atrophy 1 gene in 193 Chinese families with suspected hereditary optic neuropathy. Mol Vis 2013, 19:292-302.
- [45]Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G: Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003, 278(10):7743-7746.
- [46]Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion . Cell 2006, 126(1):177-189.
- [47]Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, et al.: OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 2011, 21(1):12-20.
- [48]Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, et al.: SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 2009, 28(11):1589-1600.
- [49]Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG, et al.: Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 2006, 281(49):37972-37979.
- [50]Griparic L, Kanazawa T, van der Bliek AM: Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 2007, 178(5):757-764.
- [51]Ishihara N, Fujita Y, Oka T, Mihara K: Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J 2006, 25(13):2966-2977.
- [52]Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D'Adamio L, et al.: Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006, 126(1):163-175.
- [53]Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI, Langer T: Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 2009, 187(7):1023-1036.
- [54]Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM: Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 2009, 187(7):959-966.
- [55]Klebe S, Depienne C, Gerber S, Challe G, Anheim M, Charles P, Fedirko E, Lejeune E, Cottineau J, Brusco A, et al.: Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 2012, 135(Pt 10):2980-2993.
- [56]Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, von Kleist-Retzow JC, Waisman A, Westermann B, Langer T: Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 2008, 22(4):476-488.
- [57]Duvezin-Caubet S, Koppen M, Wagener J, Zick M, Israel L, Bernacchia A, Jagasia R, Rugarli EI, Imhof A, Neupert W, et al.: OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol Biol Cell 2007, 18(9):3582-3590.
- [58]Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L: Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. Biochim Biophys Acta 2013, 1833(2):371-380.
- [59]Yamaguchi R, Perkins G: Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochim Biophys Acta 2009, 1787(8):963-972.
- [60]Kushnareva YE, Gerencser AA, Bossy B, Ju WK, White AD, Waggoner J, Ellisman MH, Perkins G, Bossy-Wetzel E: Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell Death Differ 2013, 20(2):353-365.
- [61]Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, Kuwana T, Ellisman MH, Newmeyer DD: Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 2008, 31(4):557-569.
- [62]White KE, Davies VJ, Hogan VE, Piechota MJ, Nichols PP, Turnbull DM, Votruba M: OPA1 deficiency associated with increased autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest Ophthalmol Vis Sci 2009, 50(6):2567-2571.
- [63]Pilsl A, Winklhofer KF: Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol 2012, 123(2):173-188.
- [64]An HJ, Shin H, Jo SG, Kim YJ, Lee JO, Paik SG, Lee H: The survival effect of mitochondrial Higd-1a is associated with suppression of cytochrome C release and prevention of caspase activation. Biochim Biophys Acta 2011, 1813(12):2088-2098.
- [65]An HJ, Cho G, Lee JO, Paik SG, Kim YS, Lee H: Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria. Proc Natl Acad Sci U S A 2013, 110(32):13014-13019.
- [66]Alirol E, Martinou JC: Mitochondria and cancer: is there a morphological connection? Oncogene 2006, 25(34):4706-4716.
- [67]Hoppins S, Nunnari J: Cell Biology. Mitochondrial dynamics and apoptosis--the ER connection. Science 2012, 337(6098):1052-1054.
- [68]Martinou JC, Youle RJ: Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011, 21(1):92-101.
- [69]Bender T, Martinou JC: Where killers meet–permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 2013, 5(1):a011106.
- [70]Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, le Huynh H, Nicolas V, Alavi MV, et al.: Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 2012, 94(3):408-417.
- [71]Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L: The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 2010, 11(6):459-465.
- [72]Quinsay MN, Lee Y, Rikka S, Sayen MR, Molkentin JD, Gottlieb RA, Gustafsson AB: Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol 2010, 48(6):1146-1156.
- [73]Herrmann RG: Eukaryotism, Towards a New Interpretation. In Eukaryotism and Symbiosis. Edited by Schenk HA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W. Berlin Heidelberg: Springer; 1997:73-118.
- [74]Landes T, Martinou JC: Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim Biophys Acta 2011, 1813(4):540-545.
- [75]Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB: Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012, 287(23):19094-19104.
- [76]Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008, 283(16):10892-10903.
- [77]Zhang Z, Shi R, Weng J, Xu X, Li XM, Gao TM, Kong J: The proapoptotic member of the Bcl-2 family Bcl-2 / E1B-19K-interacting protein 3 is a mediator of caspase-independent neuronal death in excitotoxicity. FEBS J 2011, 278(1):134-142.
- [78]Nguyen D, Alavi MV, Kim K-Y, Kang T, Scott RT, Noh YH, Lindsey JD, Wissinger B, Ellisman MH, Weinreb RN, et al.: A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis 2011, 2:e240.
- [79]Bossy B, Petrilli A, Klinglmayr E, Chen J, Lutz-Meindl U, Knott AB, Masliah E, Schwarzenbacher R, Bossy-Wetzel E: S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer's disease. J Alzheimers Dis 2010, 20(Suppl 2):S513-526.
- [80]Kanazawa T, Zappaterra MD, Hasegawa A, Wright AP, Newman-Smith ED, Buttle KF, McDonald K, Mannella CA, van der Bliek AM: The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet 2008, 4(2):e1000022.
- [81]Yarosh W, Monserrate J, Tong JJ, Tse S, Le PK, Nguyen K, Brachmann CB, Wallace DC, Huang T: The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet 2008, 4(1):e6.
- [82]Tang S, Le PK, Tse S, Wallace DC, Huang T: Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS One 2009, 4(2):e4492.
- [83]Chevrollier A, Guillet V, Loiseau D, Gueguen N, de Crescenzo MA, Verny C, Ferre M, Dollfus H, Odent S, Milea D, et al.: Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann Neurol 2008, 63(6):794-798.
- [84]Van Bergen NJ, Crowston JG, Kearns LS, Staffieri SE, Hewitt AW, Cohn AC, Mackey DA, Trounce IA: Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy. PLoS One 2011, 6(6):e21347.
- [85]Kim JY, Hwang JM, Ko HS, Seong MW, Park BJ, Park SS: Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 2005, 64(6):966-972.
- [86]Yu-Wai-Man P, Sitarz KS, Samuels DC, Griffiths PG, Reeve AK, Bindoff LA, Horvath R, Chinnery PF: OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet 2010, 19(15):3043-3052.
- [87]Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010, 141(2):280-289.
- [88]Lodi R, Tonon C, Valentino ML, Manners D, Testa C, Malucelli E, La Morgia C, Barboni P, Carbonelli M, Schimpf S, et al.: Defective Mitochondrial Adenosine Triphosphate Production in Skeletal Muscle From Patients With Dominant Optic Atrophy Due to OPA1 Mutations. Arch Neurol 2011, 68(1):67-73.
- [89]Spinazzi M, Cazzola S, Bortolozzi M, Baracca A, Loro E, Casarin A, Solaini G, Sgarbi G, Casalena G, Cenacchi G, et al.: A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 2008, 17(21):3291-3302.
- [90]Marelli C, Amati-Bonneau P, Reynier P, Layet V, Layet A, Stevanin G, Brissaud E, Bonneau D, Durr A, Brice A: Heterozygous OPA1 mutations in Behr syndrome. Brain 2011, 134(Pt 4):p.e169. author reply e170
- [91]Alavi MV, Fuhrmann N, Nguyen HP, Yu-Wai-Man P, Heiduschka P, Chinnery PF, Wissinger B: Subtle neurological and metabolic abnormalities in an Opa1 mouse model of autosomal dominant optic atrophy. Exp Neurol 2009, 220(2):404-409.
- [92]Yu-Wai-Man P, Davies VJ, Piechota MJ, Cree LM, Votruba M, Chinnery PF: Secondary mtDNA defects do not cause optic nerve dysfunction in a mouse model of dominant optic atrophy. Invest Ophthalmol Vis Sci 2009, 50(10):4561-4566.
- [93]Pidoux G, Witczak O, Jarnaess E, Myrvold L, Urlaub H, Stokka AJ, Kuntziger T, Tasken K: Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 2011, 30(21):4371-4386.
- [94]Quiros PM, Ramsay AJ, Sala D, Fernandez-Vizarra E, Rodriguez F, Peinado JR, Fernandez-Garcia MS, Vega JA, Enriquez JA, Zorzano A, Lopez-Otin C: Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 2012, 31(9):2117-2133.
- [95]Guo Y, Chen X, Zhang H, Li N, Yang X, Cheng W, Zhao K: Association of OPA1 polymorphisms with NTG and HTG: a meta-analysis. PLoS One 2012, 7(8):e42387.
- [96]Ju WK, Kim KY, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I, Ellisman MH, Perkins GA, Weinreb RN: Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci 2008, 49(11):4903-4911.