Molecular Cytogenetics | |
First insights on the retroelement Rex1 in the cytogenetics of frogs | |
Luciana Bolsoni Lourenço2  Diego Baldo1  Juliana Nascimento2  | |
[1] Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas, CPA N3300LQF, Misiones, Argentina;Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, 13083-863, Campinas, Brazil | |
关键词: Leptodactylidae; Retrotransposon; Chromosome; in situ hybridization; Repetitive DNA; | |
Others : 1230758 DOI : 10.1186/s13039-015-0189-5 |
|
received in 2015-08-07, accepted in 2015-10-27, 发布年份 2015 | |
【 摘 要 】
Background
While some transposable elements (TEs) have been found in the sequenced genomes of frog species, detailed studies of these elements have been lacking. In this work, we investigated the occurrence of the Rex1 element, which is widespread in fish, in anurans of the genus Physalaemus. We isolated and characterized the reverse transcriptase (RT)-coding sequences of Rex1 elements of five species of this genus.
Results
The amino acid sequences deduced from the nucleotide sequences of the isolated fragments allowed us to unambiguously identify regions corresponding to domains 3–7 of RT. Some of the nucleotide sequences isolated from Physlaemus ephippifer and P. albonotatus had internal deletions, suggesting that these fragments are likely not active TEs, despite being derived from a Rex1 element. When hybridized with metaphase chromosomes, Rex1 probes were revealed at the pericentromeric heterochromatic region of the short arm of chromosome 3 of the P. ephippifer karyotype. Neither other heterochromatin sites of the P. ephippifer karyotype nor any chromosomal regions of the karyotypes of P. albonotatus, P. spiniger and P. albifrons were detected with these probes.
Conclusions
Rex1 elements were found in the genomes of five species of Physalaemus but clustered in only the P. ephippifer karyotype, in contrast to observations in some species of fish, where large chromosomal sites with Rex1 elements are typically present.
【 授权许可】
2015 Nascimento et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151107081102386.pdf | 4443KB | download | |
Fig. 5. | 31KB | Image | download |
Fig. 4. | 13KB | Image | download |
Fig. 3. | 25KB | Image | download |
Fig. 2. | 215KB | Image | download |
Fig. 1. | 170KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Frechotte C, Pritham JE. DNA transposons and evolution of eukaryotic genomics. Annu Rev Genet. 2007; 41:331-69.
- [2]Jurka J, Kapitonov VV, Kohany O, Jurka VM. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet. 2007; 8:241-59.
- [3]Muñoz-López M, García-Pérez JL. DNA transposon: nature and application in genome. Curr Genomics. 2010; 11:115-128.
- [4]Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002; 115:49-63.
- [5]González J, Petrov DA. Evolution of genome content: population dynamics of transposable elements in flies and humans. Methods Mol Biol. 2012; 855:361-383.
- [6]Wicker T, Sabot F, Hua-van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.
- [7]Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008; 9:411-2.
- [8]Volff JN, Körting C, Sweeney K, Schartl M. The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol. 1999; 16:1427-1438.
- [9]Volff JN, Körting C, Schartl M. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol. 2000;17:1684–4.
- [10]Volff JN, Körting C, Froschauer A, Sweeney K, Schartl M. Non-LTR retrotransposon encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol. 2001; 52:351-360.
- [11]Volff JN, Körting C, Meyer A, Schartl M. Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol. 2001; 18:427-431.
- [12]Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O. Remarkable compartmentalization of transposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci. 2002; 99:13636-13641.
- [13]Bouneau L, Fischer C, Ozouf-Costaz C, Froschauer A, Jailon O, Coutanceu JP, et al. An active Non-LTR retrotransposon with tamdem struture in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Res. 2003;13:1686–95.
- [14]Ozouf-Costaz C, Brandt J, Körting C, Pisano E, Bonillo C, Coutanceau JP, et al. Genomes dynamics and chromosomal localization of the non-LTR retrotransposon Rex1 and Rex3 in Antartic fish. Antart Sci. 2004;16:51–7.
- [15]Gross MC, Schneider CH, Valente GT, Porto JIR, Martins C, Feldberg E. Comparative cytogenetic analysis of the genus of Symphysodon (discus fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet Genome Res. 2009; 127:43-53.
- [16]Teixeira WG, Ferreira IA, Cabral-de-Mello DC, Mazzuchelli V, Pinhal GT, Poletto DAB, et al. Organization of the repeated DNA elements in the genome of the cichlid fish Cichla kelberi and its contributions to knowledge of fish genomes. Cytogenet Genome Res. 2009;125:224–34.
- [17]Mazzuchelli J, Martins C. Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica. 2009; 136:461-469.
- [18]Valente GT, Mazzucheli J, Ferreira IA, Poletto AB, Fantinatti BEA, Martins C. Cytogenetic mapping of retroelement Rex1, Rex3 and Rex6 among cichlid fish: new insights on the chromosomal distribution of transposable elements. Cytogenet Genome Res. 2011; 133:34-42.
- [19]Schneider CH, Gross MC, Terencio ML, Do Carmo EJ, Martins C, Feldberg E. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol Biol. 2013; 13:152. BioMed Central Full Text
- [20]Voltolin TP, Mendoça BB, Ferreira DC, Senhorini JA, Foresti F, Porto-Foresti F. Chromosomal localization Rex1 in the genome in five Prochilodus (Teleostei: Characiformes: Prochilodontidae) species. Mob Genet Elements. 2013; 3:e25846.
- [21]Ferreira DC, Porto-Foresti F, Oliveira C, Foresti F. Transposable elements as potential source for understanding the fish genome. Mob Genet Elements. 2011; 1:112-117.
- [22]Kapitonov VV, Jurka J. A family of Rex1 non-LTR retrotransposons from frogs – a consensus. Repbase Rep. 2009; 9:1564-1572.
- [23]Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western clawed frog Xenopus tropicalis. Science. 2010;328:633–6.
- [24]Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc Natl Acad Sci USA. 2015;2:E1257–1262.
- [25]Frost DR: Amphibian species of the world: an online reference. Version 6. 2015. Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
- [26]Lourenço LB, Targueta CP, Baldo D, Nascimento J, Garcia PCA, Andrade GA, et al. Phylogeny of Physalaemus (Anura, Leptodactylidae) inferred from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol. 2015;92:204–16.
- [27]Beçak ML, Denaro L, Beçak W. Polyploidy and mechanisms of karyotypic diversification in Amphibia. Cytogenetics. 1970; 9:225-238.
- [28]De Lucca EJ. Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryologia. 1974; 27:183-191.
- [29]Amaral MJLV, Cardoso AJ, Recco-Pimentel SM. Cytogenetic analysis of three Physalaemus species (Amphibia, Anura). Caryologia. 2000; 53:283-288.
- [30]Silva APZ, Baldissera FA. Karyotypes and nucleolus organizer regions in four species of the genus Physalaemus (Anura, Leptodactylidae). Iheringia Ser Zool. 2000; 88:159-164.
- [31]Quinderé YRSD, Lourenço LB, Andrade GV, Tomatis C, Baldo D, Recco-Pimentel SM. Polytypic and polymorphic cytogenetic variations in the widespread anuran Physalaemus cuvieri (Anura, Leiuperidae) with emphasis on nucleolar organizing regions. Biol Res. 2009; 42:79-92.
- [32]Vittorazzi SE, Quinderé YRSD, Recco-Pimentel SM, Tomatis C, Baldo D, Lima JRF, et al. Comparative cytogenetics of Physalaemus albifrons and Physalaemus cuvieri species groups (Anura, Leptodactylidae). Comp Cytogenet. 2014;8:103–23.
- [33]Milani M, Cassini CS, Recco-Pimentel SM, Lourenço LB. Karyotypic data detect interpopulational variation in Physalemus olfersii and in first case of supernumerary chromosome in the genus. Anim Biol J. 2011; 2:21-28.
- [34]Nascimento J, Quinderé YRSD, Recco-Pimentel SM, Lima JRF, Lourenço LB. Heterorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae). Genetica. 2010; 138:1127-1132.
- [35]Tomatis C, Baldo D, Kolenc F, Borteiro C. Chromosomal variation in the species of the Physalaemus henselii Group (Anura: Leiuperidae). J Herpetol. 2009; 43:555-560.
- [36]Provete DB, Garey MV, Toledo LF, Nascimento J, Lourenço LB, Rossa-Feres DC, et al. Redescription of Physalaemus barrioi Bokermann, 1966 (Anura: Leiuperidae). Copeia. 2013;3:507–18.
- [37]Malik HS, Burke WD, Eickbush TH. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol. 1999; 6:793-805.
- [38]Charlesworth B, Langley CH. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989; 23:251-287.
- [39]Dimitri P, Junakovic N. Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 1999;15:123–4.
- [40]Hua-Van A, LeRouzic A, Tribaud SB, Filée J, Capy P. The struggle for life of genome’s selfish architects. Biol Direct. 2011; 6:19. BioMed Central Full Text
- [41]Jakubczak JL, Burke WD, Eickbush TH. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci. 1991; 88:3295-3299.
- [42]Zhang X, Eickbush MT, Eickbush TH. Role of recombination in the long-term retention of transposable elements in rRNA gene loci. Genetics. 2008; 180:1617-1626.
- [43]Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyotype evolution in fish. BMC Evol Biol. 2010; 10:271. BioMed Central Full Text
- [44]Medeiros LR, Lourenço LB, Rossa-Feres DC, Lima AL, Andrade GV, Giaretta AA, et al. Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences. BMC Genet. 2013;14:59.
- [45]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Press; 1989.
- [46]Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999; 41:95-98.
- [47]Viegas-Péquignot E. In situ hybridization to chromosomes with biotinylated probes. In: In Situ Hybridization: A Practical Approach. Willernson D, editor. IRL Press, Oxford; 1992: p.137-158.
- [48]King M. C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma. 1980; 80:191-217.
- [49]Pendás AM, Morán P, Freije JP, Garcia-Vázquez E. Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Cell Genet. 1994; 67:31-36.
- [50]Rodrigues DS, Rivera M, Lourenço LB. Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet. 2012;13:17.