期刊论文详细信息
Plant Methods
Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry
Klaus Harter1  Frank Schleifenbaum3  Franziska Katharina Elisabeth Tiesler1  Ying Zhou1  Marko Vesić1  Sébastien Peter3  Niklas Wallmeroth1  Maik Böhmer2  Kenneth Wayne Berendzen1 
[1] Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany;University of California, San Diego, Division of Biological Sciences, Cell and Developmental Biology Section & Ctr for Mol. Genetics 0116, 9500 Gilman Drive #0116, La Jolla, CA, 92093-0116, USA;Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
关键词: CPK3;    Protein-protein interaction screen;    In vivo;    In planta;    BiFC;    FACS;   
Others  :  822026
DOI  :  10.1186/1746-4811-8-25
 received in 2012-04-17, accepted in 2012-05-26,  发布年份 2012
PDF
【 摘 要 】

Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed.

【 授权许可】

   
2012 Berendzen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712091938662.pdf 2076KB PDF download
Figure 6 . 125KB Image download
Figure 5 . 112KB Image download
Figure 4 . 98KB Image download
Figure 3 . 68KB Image download
Figure 2 . 98KB Image download
Figure 1 . 109KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6 .

【 参考文献 】
  • [1]Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, Yu H, Sahalie JM, Murray RR, Roncari L, de Smet AS, et al.: An experimentally derived confidence score for binary protein-protein interactions. Nat Methods 2009, 6:91-97.
  • [2]Grefen C, Obrdlik P, Harter K: The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS). Methods Mol Biol 2009, 479:217-233.
  • [3]Young KH: Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 1998, 58:302-311.
  • [4]Fujikawa Y, Kato N: Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. Plant J 2007, 52:185-195.
  • [5]Morell M, Ventura S, Avilés FX: Protein complementation assays: Approaches for the in vivo analysis of protein interactions. FEBS Lett 2009, 583:1684-1691.
  • [6]Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, et al.: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 2004, 40:428-438.
  • [7]Kerppola TK: Bimolecular Fluorescence Complementation (BiFC) Analysis as a Probe of Protein Interactions in Living Cells. Annu Rev Biophys 2008, 37:465-487.
  • [8]Boruc J, Inze D, Russinova E: A high-throughput bimolecular fluorescence complementation protein-protein interaction screen identifies functional Arabidopsis CDKA/B-CYCD4/5 complexes. Plant Signal Behav 2010, 5:1276-1281.
  • [9]Boruc J, Van den Daele H, Hollunder J, Rombauts S, Mylle E, Hilson P, Inze D, De Veylder L, Russinova E: Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network. Plant Cell 2010, 22:1264-1280.
  • [10]Morell M, Espargaro A, Aviles FX, Ventura S: Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics 2007, 7:1023-1036.
  • [11]Li M, Berendzen KW, Schoffl F: Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 2010, 73:559-567.
  • [12]Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schoffl F: Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 2010, 89:126-132.
  • [13]von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F: Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. Plant J 2011, 66:341-353.
  • [14]Edwards K, Johnstone C, Thompson C: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 1991, 19:1349.
  • [15]Kerppola TK: Visualization of molecular interactions using bimolecular fluorescence complementation analysis: Characteristics of protein fragment complementation. Chem Soc Rev 2009, 38:2876.
  • [16]Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, et al.: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 2010, 107:8023-8028.
  • [17]Haweker H, Rips S, Koiwa H, Salomon S, Saijo Y, Chinchilla D, Robatzek S, von Schaewen A: Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 2010, 285:4629-4636.
  • [18]Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K: The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 2004, 23:3290-3302.
  • [19]Ottmann C, Weyand M, Wolf A, Kuhlmann J: Applicability of superfolder YFP bimolecular fluorescence complementation in vitro. Biol Chem 2009, 390:81-90.
  • [20]Robida AM, Kerppola TK: Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. J Mol Biol 2009, 394:391-409.
  • [21]Shyu YJ, Liu H, Deng X, Hu CD: Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 2006, 40:61-66.
  • [22]Dammann C: Subcellular Targeting of Nine Calcium-Dependent Protein Kinase Isoforms from Arabidopsis. Plant Physiol 2003, 132:1840-1848.
  • [23]Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M: The Ca2 + −dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 2010, 63:484-498.
  • [24]Narendra S: The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 2006, 57:3033-3042.
  • [25]D'Andrea LD, Regan L: TPR proteins: the versatile helix. Trends Biochem Sci 2003, 28:655-662.
  • [26]Heazlewood JL: Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins. The Plant Cell Online 2004, 16:241-256.
  • [27]Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH: Novel Proteins, Putative Membrane Transporters, and an Integrated Metabolic Network Are Revealed by Quantitative Proteomic Analysis of Arabidopsis Cell Culture Peroxisomes. Plant Physiol 2008, 148:1809-1829.
  • [28]Umate P: Oxysterol binding proteins (OSBPs) and their encoding genes in Arabidopsis and rice. Steroids 2011, 76:524-529.
  • [29]Lord JM, Spooner RA: Ricin Trafficking in Plant and Mammalian Cells. Toxins 2011, 3:787-801.
  • [30]Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tonsing K, Anselmetti D, Grasser KD: Nucleocytoplasmic Distribution of the Arabidopsis Chromatin-Associated HMGB2/3 and HMGB4 Proteins. Plant Physiol 2010, 154:1831-1841.
  • [31]Alexandersson E, Saalbach G, Larsson C, Kjellbom P: Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. Plant Cell Physiol 2004, 45:1543-1556.
  • [32]Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, et al.: Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 2010, 10:97. BioMed Central Full Text
  • [33]Llères D, Swift S, Lamond AI: Detecting Protein-Protein Interactions In Vivo with FRET using Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM). , ; 2007.
  • [34]Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R: Stem Cell Signaling in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant Physiol 2009, 152:166-176.
  • [35]Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, Elgass K, Hummel S, Hahn A, Caesar K, Schleifenbaum F, et al.: Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus. PLoS One 2011, 6:e16070.
  • [36]Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, et al.: CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS Biol 2006, 4:e327.
  • [37]DeFalco Thomas A, Bender Kyle W, Snedden Wayne A: Breaking the code: Ca2+sensors in plant signalling. Biochem J 2010, 425:27-40.
  • [38]Böhmer M, Schroeder JI: Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 2011, 67:105-118.
  • [39]Cousson A: Arabidopsis Ca2 + −dependent protein kinase CPK3 mediates relationship of putative inositol triphosphate receptor with slow-type anion channel. Biologia Plantarum 2011, 55:507-521.
  • [40]Arimura G, Sawasaki T: Arabidopsis CPK3 plays extensive roles in various biological and environmental responses. Plant Signal Behav 2010, 5:1263-1265.
  • [41]Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F: Quantitative FRET Analysis With the E0GFP-mCherry Fluorescent Protein Pair. Photochem Photobiol 2009, 85:287-297.
  • [42]Liu P, Ahmed S, Wohland T: The F-techniques: advances in receptor protein studies. Trends Endocrinol Metab 2008, 19:181-190.
  • [43]Kerppola TK: Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 2006, 7:449-456.
  • [44]Fan JY, Cui ZQ, Wei HP, Zhang ZP, Zhou YF, Wang YP, Zhang XE: Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem Biophys Res Commun 2008, 367:47-53.
  • [45]Fahnenstich H, Scarpeci TE, Valle EM, Flugge UI, Maurino VG: Generation of Hydrogen Peroxide in Chloroplasts of Arabidopsis Overexpressing Glycolate Oxidase as an Inducible System to Study Oxidative Stress. Plant Physiol 2008, 148:719-729.
  • [46]Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H: ANKYRIN REPEAT-CONTAINING PROTEIN 2A Is an Essential Molecular Chaperone for Peroxisomal Membrane-Bound ASCORBATE PEROXIDASE3 in Arabidopsis. The Plant Cell Online 2010, 22:811-831.
  • [47]Beh CT, Cool L, Phillips J, Rine J: Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 2001, 157:1117-1140.
  • [48]Hartmann MA: Plant sterols and the membrane environment. Trends Plant Sci 1998, 3:170-175.
  • [49]Endo Y, Tsurugi K: RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 1987, 262:8128-8130.
  • [50]Reeves R: Nuclear functions of the HMG proteins. Biochim Biophys Acta 2010, 1799:3-14.
  • [51]Reeves R, Nissen MS: The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 1990, 265:8573-8582.
  • [52]Launholt D, Merkle T, Houben A, Schulz A, Grasser KD: Arabidopsis Chromatin-Associated HMGA and HMGB Use Different Nuclear Targeting Signals and Display Highly Dynamic Localization within the Nucleus. The Plant Cell Online 2006, 18:2904-2918.
  • [53]Fukamatsu Y, Mitsui S, Yasuhara M, Tokioka Y, Ihara N, Fujita S, Kiyosue T: Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies. Plant Cell Physiol 2005, 46:1340-1349.
  • [54]Milla MA, Townsend J, Chang IF, Cushman JC: The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 2006, 61:13-30.
  • [55]Alliotte T, Tire C, Engler G, Peleman J, Caplan A, Van Montagu M, Inze D: An Auxin-Regulated Gene of Arabidopsis thaliana Encodes a DNA-Binding Protein. Plant Physiol 1989, 89:743-752.
  • [56]Merkle T, Leclerc D, Marshallsay C, Nagy F: A plant in vitro system for the nuclear import of proteins. Plant J 1996, 10:1177-1186.
  • [57]Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F: Hybrid genes in the analysis of transformation conditions. Plant Mol Biol 1987, 8:363-373.
  • [58]Schutze K, Harter K, Chaban C: Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol 2009, 479:189-202.
  • [59]Orkin S: Molecular-Cloning - a Laboratory Manual, 2nd Edition - Sambrook, J, Fritsch, Ef, Maniatis, T. Nature 1990, 343:604-605.
  • [60]Voinnet O, Rivas S, Mestre P, Baulcombe D: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 2003, 33:949-956.
  • [61]Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schutze K, Alonso R, Harter K, Vicente-Carbajosa J, Droge-Laser W: Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 2006, 25:3133-3143.
  • [62]Horak J, Grefen C, Berendzen KW, Hahn A, Stierhof YD, Stadelhofer B, Stahl M, Koncz C, Harter K: The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 2008, 8:77. BioMed Central Full Text
  • [63]Grefen C, Lalonde S, Obrdlik P: Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Curr Protoc Neurosci 2007, 41:1-5.
  文献评价指标  
  下载次数:4次 浏览次数:13次