期刊论文详细信息
Particle and Fibre Toxicology
Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin
Merete Hofshagen4  Bjørnar Ytrehus4  Inger-Lise Larsen4  Sebastian Westermann5  Hege Brun-Hansen2  Edgar Brun4  Bernt Johansen6  Zerai Woldehiwet9  Anja B Kristoffersen7  Ketil Isaksen3  Hildegunn Viljugrein1  Sophie O Vanwambeke8  Solveig Jore4 
[1] Centre for Ecological and Evolutionary Synthesis (CEES), Department of Bioscience, University of Oslo, P.O.Box 1066, 0316 Blindern, Oslo, Norway;Norwegian School of Veterinary Science, Ullevålsveien 72, P.O.Box 8146, Dep., 0033, Oslo, Norway;The Norwegian Meteorological Institute, Research and Development Department, Division for Model and Climate Analysis, P.O.Box 43, 0313 Blindern, Oslo, Norway;Norwegian Veterinary Institute, Ullevålsveien 68, P.O.Box 750, Sentrum 0106, Oslo, Norway;Department of Geosciences, University of Oslo, P.O.Box 1066, Blindern 0316, Oslo, Norway;Northern Research Institute, P.O. Box 6434, Forskningsparken 9294, Tromsø, Norway;Department of Informatics, University of Oslo, P.O.Box 1080, Blindern 0316, Oslo, Norway;Georges Lemaître Centre for Earth and Climate Research, Earth & Life Institute, Université Catholique de Louvain, Place Louis Pasteur 3, B1348, Louvain-la-Neuve, Belgium;Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE Wirral, UK
关键词: Remote sensing;    Global environmental change;    Ecotones;    Bush encroachment;    Anaplasma phagocytophilum;    Ixodes ricinus;    Climatic variability;    Climate change;    Range expansion;    Tick;   
Others  :  823301
DOI  :  10.1186/1756-3305-7-11
 received in 2013-11-07, accepted in 2013-12-31,  发布年份 2014
PDF
【 摘 要 】

Background

Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data.

Methods

We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions.

Results

Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model.

Conclusions

Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.

【 授权许可】

   
2014 Jore et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713001945164.pdf 1085KB PDF download
Figure 3. 46KB Image download
Figure 2. 63KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Randolph SE: Tick-borne disease systems emerge from the shadows: the beauty lies in molecular detail, the message in epidemiology. Parasitology 2009, 136:1403-1413.
  • [2]Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E: Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip Perspect Infect Dis 2009, 2009:593232.
  • [3]Anderson BJ, Akcakaya HR, Araujo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW: Dynamics of range margins for metapopulations under climate change. Proc R Soc B Biol Sci 2009, 276:1415-1420.
  • [4]Randolph SE: Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 2004, 129(Suppl):S37-S65.
  • [5]Macleod JAJ: The binomics of Ixodes ricinus L.,the “sheep tick” of Scotland. Parasitology 1932, 24:382-400.
  • [6]Perret JL, Rais O, Gern L: Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol 2004, 41:361-365.
  • [7]Macleod JAJ: Ixodes ricinus in relation to its physical environment. IV. An analysis of the ecological complexes controlling distribution and activities. Parasitology 1936, 28:295-315.
  • [8]Field CB, Barros V, Stocker TF, Quin D, Dokken DJ, Ebi KL, et al. United Kingdom and New York, NY, USA: Cambridge university press; 2012.
  • [9]Randolph SE: Ticks and tick-borne disease systems in space and from space. Adv Parasitol 2000, 47:217-243.
  • [10]Rogers DJ, Randolph SE, Snow RW, Hay SI: Satellite imagery in the study and forecast of malaria. Nature 2002, 415:710-715.
  • [11]Randolph S: The impact of tick ecology on pathogen transmission dynamics. In Ticks: Biology, Disease and Control. Edited by Bowman AS, Nuttall PA. Cambridge, UK: Cambridge University Press; 2008:40-72.
  • [12]Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P: Seasonality and the dynamics of infectious diseases. Ecol Lett 2006, 9:467-484.
  • [13]Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS: Early effects of climate change: do they include changes in vector-borne disease? Phil Trans R Soc Lond B-Biol Sci 2001, 356:1057-1068.
  • [14]Dobson ADM, Randolph SE: Modelling the effects of recent changes in climate, host density and acaricide treatments on population dynamics of Ixodes ricinus in the UK. J Appl Ecology 2011, 48:1029-1037.
  • [15]Randolph SE: Mighty theories from little acorns grow: is Lyme disease risk predictable from mast-seeding by oak trees? Trends in Ecol Evol 1998, 13:301-303.
  • [16]Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pena A, George JC, Golovljova I, Jaenson TGT, Jensen JK, Jensen PM, et al.: Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors 2013, 6:1. BioMed Central Full Text
  • [17]Randolph SE: Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int J Parasitol 2004, 293(Suppl 37):5-15.
  • [18]Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen A, Nygard K, Brun E, Ottesen P, Saevik B, Ytrehus B: Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors 2011, 4:84. BioMed Central Full Text
  • [19]Stuen S, Bergstrom K: Serological investigation of granulocytic Ehrlichia infection in sheep in Norway. Acta Vet Scand 2001, 42:331-338. BioMed Central Full Text
  • [20]Woldehiwet Z: The natural history of Anaplasma phagocytophilum. Vet Parasitol 2010, 167:108-122.
  • [21]Cochez C, Ducoffre G, Vandenvelde C, Luyasu V, Heyman P: Human anaplasmosis in Belgium: a 10-year seroepidemiological study. Ticks Tick Borne Dis 2011, 2:156-159.
  • [22]Kocan KM, Busby AT, Allison RW, Breshears MA, Coburn L, Galindo RC, Ayllon N, Blouin EF, de la Fuente J: Sheep experimentally infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis ticks. Ticks Tick Borne Dis 2012, 3:147-153.
  • [23]Woldehiwet Z: Anaplasma phagocytophilum in ruminants in Europe. Ann N Y Acad Sci 2006, 1078:446-460.
  • [24]Coleman PG, Perry BD, Woolhouse ME: Endemic stability–a veterinary idea applied to human public health. Lancet 2001, 357:1284-1286.
  • [25]Van den Bossche P, Coetzer JA: Climate change and animal health in Africa. Review Scientif Techn 2008, 27:551-562.
  • [26]Mehl R: The distribution and host relations of Norwegian ticks (Acari, Ixodides). Fauna norvegica Series B 1983, 30:46-51.
  • [27]Tambs-Lyche H: Ixodes ricinus og piroplasmosen i Norge (Meddelelse fra Bergens Museums zoologiske avdeling). Norsk veterinærtidsskrift 1943, 55:337-542.
  • [28]Woldehiwet Z, Horrocks BK: Antigenicity of ovine strains of Anaplasma phagocytophilum grown in tick cells and ovine granulocytes. J Comp Pathol 2005, 132:322-328.
  • [29]Woldehiwet Z, Yavari C: Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against Anaplasma phagocytophilum in sheep. J Comp Pathol 2012, 146:116-121.
  • [30]R: A language and environment for statistical computing. 2011. http:/www.r-project.org webcite
  • [31]Wood SN: Generalized additive models:an introduction with R. London: Chapman & Hall, CRC; 2006.
  • [32]Burnham KP, Anderson DR: Multimodel Inference:understanding AIC and BIC in model selection. Sociol Methods Research 2004, 33:261-304.
  • [33]Mason SJ, Graham NE: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quarterly J Royal Meteorol Soc 2002, 128:2145-2166.
  • [34]Hijmans RJ, Graham CH: The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biology 2006, 12:2272-2281.
  • [35]Raffel TR, Romansic JM, Halstead NT, McMahon TA, Venesky MD, Rohr JR: Disease and thermal acclimation in a more variable and unpredictable climate. Nat Clim Chang 2012, 3:146-151.
  • [36]Araujo MB, Luoto M: The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 2007, 16:743-753.
  • [37]Jaeschke A, Bittner T, Jentsch A, Reineking B, Schlumprecht H, Beierkuhnlein C: Biotic interactions in the face of climate change: a comparison of three modelling approaches. PLoS ONE 2012, 7:e51472.
  • [38]Thomas RJ, Birtles RJ, Radford AD, Woldehiwet Z: Recurrent bacteraemia in sheep infected persistently with anaplasma phagocytophilum. J Comp Pathol 2012, 147:360-367.
  • [39]Lempereur L, Lebrun M, Cuvelier P, Sepult G, Caron Y, Saegerman C, Shiels B, Losson B: Longitudinal field study on bovine Babesia spp. and Anaplasma phagocytophilum infections during a grazing season in Belgium. Parasitol Res 2012, 110:1525-1530.
  • [40]Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR: Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 2008, 105:6668-6672.
  • [41]Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB: Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 2010, 107:15135-15139.
  • [42]Folguera G, Bastias DA, Caers J, Rojas JM, Piulachs MD, Belles X, Bozinovic F: An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: Implications for global warming. Comp Biochem Physiol A Mol Integr Physiol 2011, 159:242-246.
  • [43]Hancock PA, Brackley R, Palmer SCF: Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 2011, 41:513-522.
  • [44]Hanssen-Bauer I, Drange H, Førland EJ, Roald LA, Børsheim KY, Hisdal H, Lawrence D, Nesje A, Sandven S, Sorteberg A, Sundby S, Vasskogog K, Adlandsvik B, ESPON 2013 244: Klima i Norge 2100. Bakgrunnsmateriale til NOU Klimatilplassing, Norsk klimasenter, September 2009. Oslo; 2009.
  • [45]Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW: Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313:940-943.
  • [46]James MC, Bowman AS, Forbes KJ, Lewis F, McLeod JE, Gilbert L: Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology 2013, 140:237-246.
  • [47]Jaenson TG, Eisen L, Comstedt P, Mejlon HA, Lindgren E, Bergstrom S, Olsen B: Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med Vet Entomol 2009, 23:226-237.
  • [48]Gray DM, Male DH: Snow and climate. Pergamon, Toronto: Handbook of snow; 1981.
  • [49]Isaksen K, Odegard RS, Etzelmuller B, Hilbich C, Hauck C, Farbrot H, Eiken T, Hygen HO, Hipp TF: Degrading mountain permafrost in Southern Norway: spatial and temporal variability of mean ground temperatures, 1999–2009. Permafrost Periglac Process 2011, 22:361-377.
  • [50]Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucc M, Soden B, Zhai P, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL: Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.
  • [51]Dobson ADM, Finnie TJR, Randolph SE: A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus. J Appl Ecol 2011, 48:1017-1028.
  • [52]Martin N: Effects of Climate Change on the Distribution of white-footed mouse (Peromyscus leucopus), an Ecologically and Epidemiologically Important Species. University of Michigan; 2010. [PhD Thesis]
  • [53]Dyrrdal AV, Isaksen K, Hygen HO, Meyer NK: Past changes in frequency, intensity and spatial occurrence of meteorological triggering variables relevant for natural hazards in Norway. Climate Res 2012, 55:153-165.
  • [54]Lindsay LR, Barker IK, Surgeoner GA, Mcewen SA, Gillespie TJ, Robinson JT: Survival and development of ixodes-scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J Med Entomol 1995, 32:143-152.
  • [55]Randolph SE, Green RM, Hoodless AN, Peacey MF: An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 2002, 32:979-989.
  • [56]Adejinmi JO: Effect of water flooding on the oviposition capacity of engorged adult females and hatchability of eggs of dog ticks: Rhipicephalus sanguineus and Haemaphysalis leachi leachi. J Parasitol Res 2011, 2011:824162.
  • [57]Sutherst RW: An experimental investigation into the effects of flooding on the ixodid tick Boophilus microplus. Oecologia 1971, 6:208-222.
  • [58]Dipeolu OO: Studies on ticks of veterinary importance in Nigeria XII. Oviposition and enclosion in five species of ixodid ticks in contrasting habitats. Exp Appl Acarol 1985, 1:45-62.
  • [59]Olwoch JM, Rautenbach CJDW, Erasmus BFN, Engelbrecht FA, Van Jaarsveld AS: Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfaces. J Biogeogr 2003, 30:1221-1232.
  • [60]Estrada-Pena A: Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari : Ixodidae) in northern Spain. J Med Entomol 2001, 38:361-370.
  • [61]Hubalek Z, Halouzka J, Juricova Z, Sikutova S, Rudolf I: Effect of forest clearing on the abundance of Ixodes ricinus ticks and the prevalence of Borrelia burgdorferi S.l. Med Vet Entomol 2006, 20:166-172.
  • [62]Ward SE, Brown RD: A framework for incorporating the prevention of Lyme disease transmission into the landscape planning and design process. Land Urban Planning 2002, 66:91-106.
  • [63]Tack W, Madder M, Baeten L, Vanhellemont M, Gruwez R, Verheyen K: Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. Forest Ecol Manag 2012, 265:30-36.
  • [64]Hoch T, Monnet Y, Agoulon A: Influence of host migration between woodland and pasture on the population dynamics of the tick Ixodes ricinus: a modelling approach. Ecol Modelling 2010, 221:1798-1806.
  • [65]Bryn A, Dourojeanni P, Hemsing LØ, O’Donell S: A high resolution GIS model of potential forest expansion following land use changes in Norway. Scand J Forest Res 2012, 28:81-98.
  • [66]Bryn A: Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilisation? Norw J Geogr 2008, 62:251-270.
  • [67]Aune S, Hofgaard A, Soderstrom L: Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Canadian J Forest Res 2011, 41:437-449.
  • [68]Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E: Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors 2012, 5:8. BioMed Central Full Text
  • [69]Vanwambeke SO, Sumilo D, Bormane A, Lambin EF, Randolph SE: Landscape predictors of tick-borne encephalitis in latvia: land cover, land use, and land ownership. Vector Borne Zoonotic Dis 2010, 10:497-506.
  • [70]Gassner F, Verbaarschot P, Smallegange RC, Spitzen J, Van Wieren SE, Takken W: Variations in Ixodes ricinus density and borrelia infections associated with cattle introduced into a woodland in The Netherlands. Appl Environ Microbiol 2008, 74:7138-7144.
  • [71]Richter D, Matuschka FR: Elimination of lyme disease spirochetes from ticks feeding on domestic ruminants. Appl Environ Microbiol 2010, 76:7650-7652.
  • [72]Daszak P, Cunningham AA, Hyatt AD: Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 2001, 78:103-116.
  • [73]Keesing F, Holt RD, Ostfeld RS: Effects of species diversity on disease risk. Ecol Lett 2006, 9:485-498.
  • [74]Patz JA, Graczyk TK, Geller N, Vittor AY: Effects of environmental change on emerging parasitic diseases. Int J Parasit 2000, 30:1395-1405.
  • [75]Scharf W, Schauer S, Freyburger F, Petrovec M, Schaarschmidt-Kiener D, Liebisch G, Runge M, Ganter M, Kehl A, Dumler JS, et al.: Distinct Host Species Correlate with Anaplasma phagocytophilum ankA Gene Clusters. J Clin Microbiol 2011, 49:790-796.
  • [76]Stuen S, Pettersen KS, Granquist EG, Bergstrom K, Bown KJ, Birtles RJ: Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis 2013, 4:197-201.
  • [77]Stuen S: Genetic variants of Anaplasma phagocytophilum in Norway. Int J Med Microbiol 2006, 296:164.
  • [78]Gray JS: The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 1998, 22:249-258.
  • [79]Kiffner C, Lodige C, Alings M, Vor T, Ruhe F: Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). Exp Appl Acarol 2010, 52:73-84.
  • [80]Li S, Heyman P, Cochez C, Simons L, Vanwambeke SO: A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium. Parasit Vectors 2012, 5:149. BioMed Central Full Text
  • [81]Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F: Climate, deer, rodents, and acorns as determinants of variation in lyme-disease risk. Plos Biology 2006, 4:e145.
  • [82]Robertson JN, Gray JS, Stewart P: Tick bite and Lyme borreliosis risk at a recreational site in England. Eur J Epidemiol 2000, 16:647-652.
  • [83]Vor T, Kiffner C, Hagedorn P, Niedrig M, Ruhe F: Tick burden on European roe deer (Capreolus capreolus). Expl Appl Acarol 2010, 51:405-417.
  • [84]Walker AR, Alberdi MP, Urquhart KA, Rose H: Risk factors in habitats of the tick Ixodes ricinus influencing human exposure to Ehrlichia phagocytophila bacteria. Med Vet Entomol 2001, 15:40-49.
  • [85]Wilson ML, Levine JF, Spielman A: Effect of deer reduction on abundance of the deer tick (Ixodes dammini). Yale J Biol Med 1984, 57:697-705.
  • [86]Gilbert L: Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 2010, 162:217-225.
  • [87]Jensen PM, Hansen H, Frandsen F: Spatial risk assessment for lyme borreliosis Denmark. Scand J Infect Dis 2000, 32:545-550.
  • [88]Ruiz-Fons F, Gilbert L: The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol 2010, 40:1013-1020.
  • [89]Bolzoni L, Rosa R, Cagnacci F, Rizzoli A: Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012, 42:373-381.
  • [90]Levi T, Kilpatrick AM, Mangel M, Wilmers CC: Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci USA 2012, 109:10942-10947.
  • [91]Cattadori IM, Haydon DT, Thirgood SJ, Hudson PJ: Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 2003, 100:439-446.
  • [92]Ranta E, Lindstrom J, Linden H, Helle P: How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos 2008, 117:1461-1468.
  文献评价指标  
  下载次数:19次 浏览次数:17次