期刊论文详细信息
Virology Journal
A monoclonal antibody against lymphocyte function-associated antigen-1 decreases HIV-1 replication by inducing the secretion of an antiviral soluble factor
Eric S Rosenberg1  Sue Bazner1  Graham McGrath1  Lindsay Jones1  Jenna Rychert1 
[1] Departments of Medicine and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
关键词: Monoclonal antibody therapy;    LFA-1;    HIV-1;   
Others  :  1150797
DOI  :  10.1186/1743-422X-10-120
 received in 2012-12-13, accepted in 2013-04-12,  发布年份 2013
PDF
【 摘 要 】

Background

Lymphocyte Function-Associated Antigen-1 (LFA-1) likely plays a role in the pathogenesis of against HIV-1 and is known to facilitate cell-to-cell transmission of the virus. A monoclonal antibody specific for LFA-1 (Cytolin®) was evaluated as a potential therapeutic in pilot studies performed in the mid-1990s. These uncontrolled human studies suggested that administration of this anti-LFA-1 antibody to HIV-1 infected individuals could provide a modest benefit by decreasing circulating HIV-1 RNA and increasing CD4+ T cell counts. At the time, it was proposed that when bound to cytolytic T cells, the antibody inhibited lysis of activated CD4+ T cells. Given the renewed interest in monoclonal antibody therapy for HIV-1 infected individuals, we investigated possible mechanisms of action of this antibody in vitro.

Methods

To assess whether this anti-LFA-1 antibody binds to HIV-1, a virus capture assay was performed. Binding of the antibody to cells was assessed using flow cytometry. Inhibition of HIV-1 replication was determined in culture by measuring the amount of p24 produced by ELISA. After co-culture of the antibody with peripheral blood mononuclear cells, supernatants were assayed for cytokines and chemokines using various immunoassays.

Results

Our experiments demonstrate that anti-LFA-1 antibody binds to CCR5 and CXCR4 utilizing strains of HIV-1. It also binds to CD8+ T cells and dendritic cells. When bound to virus prior to infection, there is no decrease in HIV-1 replication, suggesting it does not directly inhibit viral replication via virus binding. When bound to cells, it does not inhibit lysis of CD4+ T cells, as was originally hypothesized. Binding to cells does appear to induce the production of a soluble factor that inhibits HIV-1 replication. We determined that this soluble factor was not any of the cytokines or chemokines with known anti-HIV-1 activity. Further, the antibody does not appear to induce any common immune modulating cytokines or chemokines.

Conclusions

These results suggest that one possible mechanism of action of this anti-LFA-1 antibody is to inhibit HIV-1 replication via the production of a soluble antiviral factor that is induced upon binding to cells.

【 授权许可】

   
2013 Rychert et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405224621892.pdf 445KB PDF download
Figure 5. 47KB Image download
Figure 4. 26KB Image download
Figure 3. 26KB Image download
Figure 2. 28KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bastiani L, Laal S, Kim M, Zolla-Pazner S: Host cell-dependent alterations in envelope components of human immunodeficiency virus type 1 virions. J Virol 1997, 71:3444-3450.
  • [2]Jolly C, Mitar I, Sattentau QJ: Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 2007, 81:13916-13921.
  • [3]Morimoto C, Rudd CE, Letvin NL, Schlossman SF: A novel epitope of the LFA-1 antigen which can distinguish killer effector and suppressor cells in human CD8 cells. Nature 1987, 330:479-482.
  • [4]Cavallin F, Traldi A, Zambello R: Phenotypical and functional evaluation of CD8+/S6F1+ T lymphocytes in haemophiliac individuals with HIV-1 infection. Clin Exp Immunol 1993, 93:51-55.
  • [5]Fauce SR, Yang OO, Effros RB: Autologous CD4/CD8 co-culture assay: a physiologically-relevant composite measure of CD8+ T lymphocyte function in HIV-1 infected persons. J Immunol Methods 2007, 327:75-81.
  • [6]Watret KC, Whitelaw JA, Froebel KS, Bird AG: Phenotypic characterization of CD8+ T cell populations in HIV-1 disease and in anti-HIV immunity. Clin Exp Immunol 1993, 92:93-99.
  • [7]Allen AD, Hart DN, Hechinger MK, Slattery MJ, Chesson CV, Vidikan P: Leukocyte adhesion molecules as a cofactor in AIDS: basic science and pilot study. Medical hypotheses 1995, 45:164-168.
  • [8]Allen AD, Hillis T, Vidikan P, Beer V: Pitfalls in the use of surrogate markers for human immunodeficiency virus disease: further evidence on pathogenesis. Medical hypotheses 1996, 47:27-30.
  • [9]Grant MD, Smaill FM, Rosenthal KL: Lysis of CD4+ lymphocytes by non-HLA-restricted cytotoxic T lymphocytes from HIV-1 infected individuals. Clin Exp Immunol 1993, 93:356-362.
  • [10]Zarling JM, Ledbetter JA, Sias J, Fultz P, Eichberg J, Gjerset G, Moran PA: HIV-1 infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells. J Immunol 1990, 144:2992-2998.
  • [11]Lub M, Van Kooyk Y, Figdor CG: Ins and outs of LFA-1. Immunol Today 1995, 16:479-483.
  • [12]Fan ST, Edgington TS: Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol 1993, 150:2972-2980.
  • [13]Levy JA: The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol 2003, 24:628-632.
  • [14]Mackewicz CE, Ortega H, Levy JA: Effect of cytokines on HIV-1 replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell Immunol 1994, 153:329-343.
  • [15]Vella C, Daniels RS: CD8+ T-cell-mediated non-cytolytic suppression of human immuno-deficiency viruses. Curr Drug Targets Infect Disord 2003, 3:97-113.
  • [16]Xingyuan M, Wenyun Z, Tianwen W: Leukocyte function-associated antigen-1: structure, function and application prospects. Protein Pept Lett 2006, 13:397-400.
  • [17]Tardif MR, Tremblay MJ: Regulation of LFA-1 activity through cytoskeleton remodeling and signaling components modulates the efficiency of HIV-1 type-1 entry in activated CD4+ T lymphocytes. J Immunol 2005, 175:926-935.
  • [18]Hioe CE, Tuen M, Vasiliver-Shamis G, Alvarez Y, Prins KC, Banerjee S, Nadas A, Cho MW, Dustin ML, Kachlany SC: HIV-1 envelope gp120 activates LFA-1 on CD4 T-lymphocytes and increases cell susceptibility to LFA-1-targeting leukotoxin (LtxA). PLoS One 2011, 6:e23202.
  • [19]Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, Xiao Z, Veenstra TD, Conrad TP, Lempicki RA: HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008, 9:301-309.
  • [20]Walker CM, Levy JA: A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV-1 replication. Immunology 1989, 66:628-630.
  • [21]Moody MA, Liao HX, Alam SM, Scearce RM, Plonk MK, Kozink DM, Drinker MS, Zhang R, Xia SM, Sutherland LL: Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce beta-chemokines. J Exp Med 2010, 207:763-776.
  • [22]Nyambi PN, Gorny MK, Bastiani L, van der Groen G, Williams C, Zolla-Pazner S: Mapping of epitopes exposed on intact human immunodeficiency virus type 1 (HIV-1) virions: a new strategy for studying the immunologic relatedness of HIV-1. J Virol 1998, 72:9384-9391.
  • [23]Nyambi PN, Mbah HA, Burda S, Williams C, Gorny MK, Nadas A, Zolla-Pazner S: Conserved and exposed epitopes on intact, native, primary human immunodeficiency virus type 1 virions of group M. J Virol 2000, 74:7096-7107.
  • [24]Cham F, Zhang PF, Heyndrickx L, Bouma P, Zhong P, Katinger H, Robinson J, van der Groen G, Quinnan GV Jr: Neutralization and infectivity characteristics of envelope glycoproteins from human immunodeficiency virus type 1 infected donors whose sera exhibit broadly cross-reactive neutralizing activity. Virology 2006, 347:36-51.
  • [25]Moore JP, McCutchan FE, Poon SW, Mascola J, Liu J, Cao Y, Ho DD: Exploration of antigenic variation in gp120 from clades A through F of human immunodeficiency virus type 1 by using monoclonal antibodies. J Virol 1994, 68:8350-8364.
  • [26]Robinson JE, Elliott DH, Martin EA, Micken K, Rosenberg ES: High frequencies of antibody responses to CD4 induced epitopes in HIV-1 infected patients started on HAART during acute infection. Hum Antibodies 2005, 14:115-121.
  • [27]Tuen M, Visciano ML, Chien PC Jr, Cohen S, Chen PD, Robinson J, He Y, Pinter A, Gorny MK, Hioe CE: Characterization of antibodies that inhibit HIV-1 gp120 antigen processing and presentation. Eur J Immunol 2005, 35:2541-2551.
  文献评价指标  
  下载次数:34次 浏览次数:13次