期刊论文详细信息
Particle and Fibre Toxicology
Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models
Hélène Guis4  Vincent Corbel1  Fabrice Chandre2  Abdul S Bio-Bangana3  Armel Djènontin3  Nicolas Moiroux2 
[1] Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok10900, Thailand;MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement (IRD), BP64501, 34394 Montpellier, France;Centre de Recherche en Entomologie de Cotonou (CREC), Ministère de la Santé, Cotonou, Bénin;INRA, UMR, 1309 CMAEEF-34398, Montpellier, France
关键词: Map;    Vector control;    Zero-truncated;    Abundance;    Modelling;    Anopheles;    Malaria;   
Others  :  810566
DOI  :  10.1186/1756-3305-7-103
 received in 2013-09-17, accepted in 2014-03-03,  发布年份 2014
PDF
【 摘 要 】

Background

A better understanding of the ecology and spatial-temporal distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. In a previous study, we analyzed presence-absence data of An. funestus, An. coluzzii, and An. gambiae s.s. in an area of southern Benin with high coverage of vector control measures. Here, we further extend the work by analysing the positive values of the dataset to assess the determinants of the abundance of these three vectors and to produce predictive maps of vector abundance.

Methods

Positive counts of the three vectors were assessed using negative-binomial zero-truncated (NBZT) mixed-effect models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validation of the models, predictive maps of abundance of the sympatric An. funestus, An. coluzzii, and An. gambiae s.s. were produced.

Results

Cross-validation of the NBZT models showed a satisfactory predictive accuracy. Almost all changes in abundance between two surveys in the same village were well predicted by the models but abundances for An. gambiae s.s. were slightly underestimated. During the dry season, predictive maps showed that abundance greater than 1 bite per person per night were observed only for An. funestus and An. coluzzii. During the rainy season, we observed both increase and decrease in abundance of An. funestus, which are dependent on the ecological setting. Abundances of both An. coluzzii and An. gambiae s.s. increased during the rainy season but not in the same areas.

Conclusions

Our models helped characterize the ecological preferences of three major African malaria vectors. This works highlighted the importance to study independently the binomial and the zero-truncated count processes when evaluating vector control strategies. The study of the bio-ecology of malaria vector species in time and space is critical for the implementation of timely and efficient vector control strategies.

【 授权许可】

   
2014 Moiroux et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709044141755.pdf 892KB PDF download
Figure 3. 164KB Image download
Figure 2. 211KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Trape JF, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, Dieye-Ba F, Roucher C, Bouganali C, Badiane A, Sarr FD, Mazenot C, Toure-Balde A, Raoult D, Druilhe P, Mercereau-Puijalon O, Rogier C, Sokhna C: Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis 2011, 11:925-932.
  • [2]Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG, Henry MC: Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis 2012, 12:617-626.
  • [3]Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M: Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, benin. Emerg Infect Dis 2012, 18:1101-1106.
  • [4]Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, Gimnig JE, Fish D, Killeen GF: Ecology: a prerequisite for malaria elimination and eradication. PLoS Med 2010, 7:e1000303.
  • [5]The malERA Consultative Group on Vector Control: A research agenda for malaria eradication: vector control. PLoS Med 2011, 8:e1000401.
  • [6]Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI: A global map of dominant malaria vectors. Parasit Vectors 2012, 5:69. BioMed Central Full Text
  • [7]Boussari O, Moiroux N, Iwaz J, Djenontin A, Bio-Bangana S, Corbel V, Fonton N, Ecochard R: Use of a mixture statistical model in studying malaria vectors density. PLoS One 2012, 7:e50452.
  • [8]Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP: Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 2005, 8:1235-1246.
  • [9]Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM: Mixed effects models and extensions in ecology with R. New York: Springer; 2009.
  • [10]Bugoro H, Hii J, Russell TL, Cooper RD, Chan BK, Iro’ofa C, Butafa C, Apairamo A, Bobogare A, Chen CC: Influence of environmental factors on the abundance of Anopheles farauti larvae in large brackish water streams in Northern Guadalcanal, Solomon Islands. Malar J 2011, 10:262. BioMed Central Full Text
  • [11]Gadiaga L, Machault V, Pages F, Gaye A, Jarjaval F, Godefroy L, Cisse B, Lacaux JP, Sokhna C, Trape JF, Rogier C: Conditions of malaria transmission in Dakar from 2007 to 2010. Malar J 2011, 10:312. BioMed Central Full Text
  • [12]Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ: Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 2013, 3619:246-274.
  • [13]Moiroux N, Bio-Bangana A, Djenontin A, Chandre F, Corbel V, Guis H: Modelling the risk of being bitten by malaria vectors in a vector control area in southern Benin, West Africa. Parasit Vectors 2013, 6:71. BioMed Central Full Text
  • [14]Coffinet T, Rogier C, Pages F: [Evaluation of the anopheline mosquito aggressivity and of malaria transmission risk: methods used in French Army]. Med Trop (Mars) 2009, 69:109-122.
  • [15]Silver JB: Sampling Adults by Animal Bait Catches and by Animal-Baited Traps. In Mosquito Ecology. Dordrecht: Springer; 2008:493-675.
  • [16]Gillies M, Coetzee M: A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg, South Africa: South African Institute for Medical Research; 1987.
  • [17]Gillies M, DeMeillon B: The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Publication South Afr Inst Med Res 1968, 54:343.
  • [18]Koekemoer LL, Kamau L, Hunt RH, Coetzee M: A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 2002, 66:804-811.
  • [19]Scott JA, Brogdon WG, Collins FH: Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 1993, 49:520-529.
  • [20]Favia G, Lanfrancotti A, Spanos L, Siden-Kiamos I, Louis C: Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 2001, 10:19-23.
  • [21]Service MW: Mosquito (Diptera: Culicidae) dispersal–the long and short of it. J Med Entomol 1997, 34:579-588.
  • [22]R Development Core Team: R: A Language and Environment for Statistical Computing. 212th edition. Vienna, Austria: R Foundation for Statistical Computing; 2010.
  • [23]Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B: glmmADMB: Generalized Linear Mixed Models Using AD Model Builder. 2012. R package version 0725/r186
  • [24]Cottrell G, Kouwaye B, Pierrat C, le Port A, Bouraima A, Fonton N, Hounkonnou MN, Massougbodji A, Corbel V, Garcia A: Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study. PLoS One 2012, 7:e28812.
  • [25]Hamon J: Biologie d’Anopheles funestus. In Biologie des anophèles d’AOF et d’AEF. Volume 2. Paris: ORSTOM; 1955. 6 multigr
  • [26]Tucker CJ: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 1979, 8:127-150.
  • [27]Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F: Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol 2011, 26:9-17.
  • [28]Diabate A, Dabire RK, Heidenberger K, Crawford J, Lamp WO, Culler LE, Lehmann T: Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation. BMC Evol Biol 2008, 8:5. BioMed Central Full Text
  • [29]Diabate A, Dabire RK, Kim EH, Dalton R, Millogo N, Baldet T, Simard F, Gimnig JE, Hawley WA, Lehmann T: Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J Med Entomol 2005, 42:548-553.
  • [30]Le Goff G, Carnevale P, Robert V: Low dispersion of anopheline malaria vectors in the African equatorial forest. Parasite 1997, 4:187-189.
  • [31]Simard F, Ayala D, Kamdem GC, Pombi M, Etouna J, Ose K, Fotsing JM, Fontenille D, Besansky NJ, Costantini C: Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol 2009, 9:17. BioMed Central Full Text
  • [32]Binka FN, Adongo P: Acceptability and use of insecticide impregnated bednets in northern Ghana. Trop Med Int Health 1997, 2:499-507.
  • [33]Frey C, Traore C, De Allegri M, Kouyate B, Muller O: Compliance of young children with ITN protection in rural Burkina Faso. Malar J 2006, 5:70. BioMed Central Full Text
  • [34]Moiroux N, Boussari O, Djènontin A, Damien G, Cottrell G, Henry M-C, Guis H, Corbel V: Dry season determinants of malaria disease and net use in Benin, West Africa. PLoS One 2012, 7:e30558.
  • [35]Djenontin A, Bio-Bangana S, Moiroux N, Henry MC, Bousari O, Chabi J, Osse R, Koudenoukpo S, Corbel V, Akogbeto M, Chandre F: Culicidae diversity, malaria transmission and insecticide resistance alleles in malaria vectors in Ouidah-Kpomasse-Tori district from Benin (West Africa): A pre-intervention study. Parasit Vectors 2010, 3:83. BioMed Central Full Text
  • [36]Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, Djegbe I, Guis H, Corbel V: Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 2012, 206:1622-1629.
  • [37]Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G: Spatial distribution and habitat characterization of anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg 1999, 61:1010-1016.
  • [38]Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GE, Emerson PM: Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health 2003, 8:512-517.
  • [39]Lwetoijera D, Kiware S, Mageni Z, Dongus S, Harris C, Devine G, Majambere S: A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors 2013, 6:57. BioMed Central Full Text
  • [40]Reddy M, Overgaard H, Abaga S, Reddy V, Caccone A, Kiszewski A, Slotman M: Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 2011, 10:184. BioMed Central Full Text
  • [41]Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF: Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 2011, 10:80. BioMed Central Full Text
  • [42]Govella NJ, Ferguson H: Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol 2012, 3:199.
  • [43]Moiroux N: Modélisation du risque d’exposition aux moustiques vecteurs de Plasmodium spp. dans un contexte de lutte anti-vectorielle. Montpellier: Université Montpellier II-Sciences et Techniques du Languedoc; 2012. [PhD thesis]
  • [44]BjØrnstad O, Falck W: Nonparametric spatial covariance functions: Estimation and testing. Env Ecol Stat 2001, 8:53-70.
  • [45]Gimnig JE, Ombok M, Kamau L, Hawley WA: Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol 2001, 38:282-288.
  • [46]WHO: World Malaria Report: 2012. Geneva: World Health Organization; 2012:195.
  • [47]Roll Back Malaria Partnership: The global malaria action plan. 2008, 274.
  文献评价指标  
  下载次数:40次 浏览次数:45次