期刊论文详细信息
Retrovirology
Impaired Th17 polarization of phenotypically naive CD4+ T-cells during chronic HIV-1 infection and potential restoration with early ART
Petronela Ancuta1  Jean-Pierre Routy3  Mohammad-Ali Jenabian4  Cécile Tremblay1  Nicole Bernard2  Aurélie Cleret-Buhot1  Annie Gosselin1  Vanessa Sue Wacleche1  Sylvia Pouvreau1  Julia Niessl1  Sandrina DaFonseca1 
[1]CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal H2X 0A9, QC, Canada
[2]Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
[3]Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
[4]Département des sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
关键词: Antiretroviral therapy;    CD127;    CD25;    Regulatory T cells;    Th17 cells;    HIV;   
Others  :  1210152
DOI  :  10.1186/s12977-015-0164-6
 received in 2014-11-10, accepted in 2015-04-02,  发布年份 2015
PDF
【 摘 要 】

Background

Depletion of mucosal Th17 cells during HIV/SIV infections is a major cause for microbial translocation, chronic immune activation, and disease progression. Mechanisms contributing to Th17 deficit are not fully elucidated. Here we investigated alterations in the Th17 polarization potential of naive-like CD4+ T-cells, depletion of Th17-commited subsets during HIV pathogenesis, and Th17 restoration in response to antiretroviral therapy (ART).

Results

Peripheral blood CD4+ T-cells expressing a naive-like phenotype (CD45RA+CCR7+) from chronically HIV-infected subjects receiving ART (CI on ART; median CD4 counts 592 cells/μl; viral load: <50 HIV-RNA copies/ml; time since infection: 156 months) compared to uninfected controls (HIV-) were impaired in their survival and Th17 polarization potential in vitro. In HIV- controls, IL-17A-producing cells mainly originated from naive-like T-cells with a regulatory phenotype (nTregs: CD25highCD127FoxP3+) and from CD25+CD127+FoxP3 cells (DP, double positive). Th17-polarized conventional naive CD4+ T-cells (nT: CD25CD127+FoxP3) also produced IL17A, but at lower frequency compared to nTregs and DP. In CI on ART subjects, the frequency/counts of nTreg and DP were significantly diminished compared to HIV- controls, and this paucity was further associated with decreased proportions of memory T-cells producing IL-17A and expressing Th17 markers (CCR6+CD26+CD161+, mTh17). nTregs and DP compared to nT cells harbored superior levels of integrated/non-integrated HIV-DNA in CI on ART subjects, suggesting that permissiveness to integrative/abortive infection contributes to impaired survival and Th17 polarization of lineage-committed cells. A cross-sectional study in CI on ART subjects revealed that nTregs, DP and mTh17 counts were negatively correlated with the time post-infection ART was initiated and positively correlated with nadir CD4 counts. Finally, a longitudinal analysis in a HIV primary infection cohort demonstrated a tendency for increased nTreg, DP, and mTh17 counts with ART initiation during the first year of infection.

Conclusions

These results support a model in which the paucity of phenotypically naive nTregs and DP cells, caused by integrative/abortive HIV infection and/or other mechanisms, contributes to Th17 deficiency in HIV-infected subjects. Early ART initiation, treatment intensification with integrase inhibitors, and/or other alternative interventions aimed at preserving/restoring the pool of cells prone to acquire Th17 functions may significantly improve mucosal immunity in HIV-infected subjects.

【 授权许可】

   
2015 DaFonseca et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150602145852475.pdf 3804KB PDF download
Figure 7. 129KB Image download
Figure 6. 78KB Image download
Figure 5. 110KB Image download
Figure 4. 88KB Image download
Figure 3. 97KB Image download
Figure 2. 103KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Kotler DP. Characterization of intestinal disease associated with human immunodeficiency virus infection and response to antiretroviral therapy. J Infect Dis. 1999; 179 Suppl 3:S454-6.
  • [2]Veazey RS, Lackner AA. Getting to the guts of HIV pathogenesis. J Exp Med. 2004; 200:697-700.
  • [3]Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol. 2012; 30:149-73.
  • [4]Klatt NR, Brenchley JM. Th17 cell dynamics in HIV infection. Curr Opin HIV AIDS. 2010; 5:135-40.
  • [5]Kim CJ, McKinnon LR, Kovacs C, Kandel G, Huibner S, Chege D et al.. Mucosal Th17 cell function is altered during HIV infection and is an independent predictor of systemic immune activation. J Immunol. 2013; 191:2164-73.
  • [6]Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S et al.. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006; 12:1365-71.
  • [7]Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A et al.. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One. 2008; 3: Article ID e2516
  • [8]Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE et al.. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008; 112:2826-35.
  • [9]Favre D, Lederer S, Kanwar B, Ma ZM, Proll S, Kasakow Z et al.. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 2009; 5: Article ID e1000295
  • [10]Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med. 2009; 60:471-84.
  • [11]Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013; 26:2-18.
  • [12]Pallikkuth S, Micci L, Ende ZS, Iriele RI, Cervasi B, Lawson B et al.. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21. PLoS Pathog. 2013; 9: Article ID e1003471
  • [13]Chevalier MF, Petitjean G, Dunyach-Remy C, Didier C, Girard PM, Manea ME et al.. The Th17/Treg ratio, IL-1RA and sCD14 levels in primary HIV infection predict the T-cell activation set point in the absence of systemic microbial translocation. PLoS Pathog. 2013; 9: Article ID e1003453
  • [14]Macal M, Sankaran S, Chun TW, Reay E, Flamm J, Prindiville TJ et al.. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol. 2008; 1:475-88.
  • [15]Chege D, Sheth PM, Kain T, Kim CJ, Kovacs C, Loutfy M et al.. Sigmoid Th17 populations, the HIV latent reservoir, and microbial translocation in men on long-term antiretroviral therapy. AIDS. 2011; 25:741-9.
  • [16]Schuetz A, Deleage C, Sereti I, Rerknimitr R, Phanuphak N, Phuang-Ngern Y et al.. Initiation of ART during Early Acute HIV Infection Preserves Mucosal Th17 Function and Reverses HIV-Related Immune Activation. PLoS Pathog. 2014; 10: Article ID e1004543
  • [17]Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol. 2007; 19:377-82.
  • [18]Dubin PJ, Kolls JK. Th17 cytokines and mucosal immunity. Immunol Rev. 2008; 226:160-71.
  • [19]Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008; 8:337-48.
  • [20]Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013; 8:477-512.
  • [21]Gosselin A, Monteiro P, Chomont N, Diaz-Griffero F, Said EA, Fonseca S et al.. Peripheral blood CCR4+ CCR6+ and CXCR3+ CCR6+ CD4+ T cells are highly permissive to HIV-1 infection. J Immunol. 2010; 184:1604-16.
  • [22]El Hed A, Khaitan A, Kozhaya L, Manel N, Daskalakis D, Borkowsky W et al.. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis. 2010; 201:843-54.
  • [23]Monteiro P, Gosselin A, Wacleche VS, El-Far M, Said EA, Kared H et al.. Memory CCR6 + CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin beta7. J Immunol. 2011; 186:4618-30.
  • [24]Alvarez Y, Tuen M, Shen G, Nawaz F, Arthos J, Wolff MJ et al.. Preferential HIV Infection of CCR6+ Th17 Cells Is Associated with Higher Levels of Virus Receptor Expression and Lack of CCR5 Ligands. J Virol. 2013; 87:10843-54.
  • [25]Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. Phenotype and susceptibility to HIV infection of CD4(+) Th17 cells in the human female reproductive tract. Mucosal Immunol. 2014; 7:1375-85.
  • [26]Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE et al.. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med. 2008; 14:421-8.
  • [27]Mavigner M, Cazabat M, Dubois M, L’Faqihi FE, Requena M, Pasquier C et al.. Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest. 2012; 122:62-9.
  • [28]Favre D, Mold J, Hunt PW, Kanwar B, Loke P, Seu L et al.. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med. 2010; 2:32-6.
  • [29]Jenabian MA, Patel M, Kema I, Kanagaratham C, Radzioch D, Thebault P et al.. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS One. 2013; 8: Article ID e78146
  • [30]Klatt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD et al.. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012; 5:646-57.
  • [31]Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K, Marsal J et al.. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 2013; 38:958-69.
  • [32]Janelsins BM, Lu M, Datta SK. Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity. Proc Natl Acad Sci U S A. 2014; 111:373-8.
  • [33]Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007; 8:942-9.
  • [34]Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008; 9:641-9.
  • [35]Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORgammat + TH17 cells preferentially differentiate from naive FOXP3 + Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci U S A. 2010; 107:19402-7.
  • [36]Lotz M, Seth P. TGF beta and HIV infection. Ann N Y Acad Sci. 1993; 685:501-11.
  • [37]Nixon DE, Landay AL. Biomarkers of immune dysfunction in HIV. Curr Opin HIV AIDS. 2010; 5:498-503.
  • [38]Weiss L, Haeffner-Cavaillon N, Laude M, Gilquin J, Kazatchkine MD. HIV infection is associated with the spontaneous production of interleukin-1 (IL-1) in vivo and with an abnormal release of IL-1 alpha in vitro. Aids. 1989; 3:695-9.
  • [39]Louis S, Dutertre CA, Vimeux L, Fery L, Henno L, Diocou S et al.. IL-23 and IL-12p70 production by monocytes and dendritic cells in primary HIV-1 infection. J Leukoc Biol. 2010; 87:645-53.
  • [40]Lee S, French MA, Price P. IL-23 and IFN-gamma deficiency in immunodeficient HIV patients who achieved a long-term increase in CD4 T-cell counts on highly active antiretroviral therapy. AIDS. 2004; 18:1337-40.
  • [41]Manuzak JA, Dillon SM, Lee EJ, Dong ZM, Hecht DK, Wilson CC. Increased Escherichia coli-induced interleukin-23 production by CD16+ monocytes correlates with systemic immune activation in untreated HIV-1-infected individuals. J Virol. 2013; 87:13252-62.
  • [42]Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al.. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8:967-74.
  • [43]Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB et al.. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007; 448:484-7.
  • [44]Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M et al.. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 2008; 454:350-2.
  • [45]Iannello A, Boulassel MR, Samarani S, Debbeche O, Tremblay C, Toma E et al.. Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J Immunol. 2010; 184:114-26.
  • [46]Iannello A, Tremblay C, Routy JP, Boulassel MR, Toma E, Ahmad A. Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts. Viral Immunol. 2008; 21:385-8.
  • [47]Micci L, Cervasi B, Ende ZS, Iriele RI, Reyes-Aviles E, Vinton C et al.. Paucity of IL-21-producing CD4(+) T cells is associated with Th17 cell depletion in SIV infection of rhesus macaques. Blood. 2012; 120:3925-35.
  • [48]Bixler SL, Sandler NG, Douek DC, Mattapallil JJ. Suppressed Th17 levels correlate with elevated PIAS3, SHP2, and SOCS3 expression in CD4 T cells during acute simian immunodeficiency virus infection. J Virol. 2013; 87:7093-101.
  • [49]Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999; 401:708-12.
  • [50]Ayyoub M, Raffin C, Valmori D. Generation of Th17 from human naive CD4+ T cells preferentially occurs from FOXP3+ Tregs upon costimulation via CD28 or CD5. Blood. 2012; 119:4810-2.
  • [51]Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al.. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006; 441:235-8.
  • [52]Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009; 30:646-55.
  • [53]Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, Arima K et al.. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009; 106:4793-8.
  • [54]Mercer F, Khaitan A, Kozhaya L, Aberg JA, Unutmaz D. Differentiation of IL-17-producing effector and regulatory human T cells from lineage-committed naive precursors. J Immunol. 2014; 193:1047-54.
  • [55]Ayyoub M, Valmori D. Comment on “differentiation of IL-17-producing effector and regulatory human T cells from lineage-committed naive precursors”. J Immunol. 2014; 193:3181.
  • [56]de Wit J, Souwer Y, van Beelen AJ, de Groot R, Muller FJ, Klaasse Bos H et al.. CD5 costimulation induces stable Th17 development by promoting IL-23R expression and sustained STAT3 activation. Blood. 2011; 118:6107-14.
  • [57]Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol. 2012; 188:5438-47.
  • [58]Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson TJ, Djuretic IM et al.. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med. 2011; 208:1875-87.
  • [59]Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B et al.. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007; 204:1849-61.
  • [60]Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F et al.. Human interleukin 17-producing cells originate from a CD161 + CD4+ T cell precursor. J Exp Med. 2008; 205:1903-16.
  • [61]Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol. 2003; 21:265-304.
  • [62]Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML et al.. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010; 143:789-801.
  • [63]Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature. 2013; 498:376-9.
  • [64]Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O et al.. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014; 505:509-14.
  • [65]Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C et al.. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013; 9: Article ID e1003211
  • [66]Le T, Wright EJ, Smith DM, He W, Catano G, Okulicz JF et al.. Enhanced CD4+ T-cell recovery with earlier HIV-1 antiretroviral therapy. N Engl J Med. 2013; 368:218-30.
  • [67]Buzon MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ et al.. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol. 2014; 88:10056-65.
  • [68]Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C et al.. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A. 2006; 103:8137-42.
  • [69]Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P et al.. Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997; 278:1803-5.
  • [70]Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F et al.. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol. 2007; 19:695-702.
  • [71]Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al.. A human memory T cell subset with stem cell-like properties. Nat Med. 2011; 17:1290-7.
  • [72]Lugli E, Gattinoni L, Roberto A, Mavilio D, Price DA, Restifo NP et al.. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc. 2013; 8:33-42.
  • [73]Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010; 140:845-58.
  • [74]Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al.. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006; 203:1693-700.
  • [75]Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al.. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006; 203:1701-11.
  • [76]Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al.. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009; 30:899-911.
  • [77]Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest. 2005; 115:1953-62.
  • [78]Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S et al.. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood. 2006; 107:2830-8.
  • [79]Sereti I, Imamichi H, Natarajan V, Imamichi T, Ramchandani MS, Badralmaa Y et al.. In vivo expansion of CD4CD45RO-CD25 T cells expressing foxP3 in IL-2-treated HIV-infected patients. J Clin Invest. 2005; 115:1839-47.
  • [80]Weiss L, Letimier FA, Carriere M, Maiella S, Donkova-Petrini V, Targat B et al.. In vivo expansion of naive and activated CD4 + CD25 + FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A. 2010; 107:10632-7.
  • [81]Chevalier MF, Weiss L. The split personality of regulatory T cells in HIV infection. Blood. 2013; 121:29-37.
  • [82]Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood. 2012; 119:4430-40.
  • [83]Simonetta F, Lecuroux C, Girault I, Goujard C, Sinet M, Lambotte O et al.. Early and long-lasting alteration of effector CD45RA(−)Foxp3(high) regulatory T-cell homeostasis during HIV infection. J Infect Dis. 2012; 205:1510-9.
  • [84]Jenabian MA, Ancuta P, Gilmore N, Routy JP. Regulatory T cells in HIV infection: can immunotherapy regulate the regulator? Clin Dev Immunol. 2012; 2012:908314.
  • [85]Sereti I, Estes JD, Thompson WL, Morcock DR, Fischl MA, Croughs T et al.. Decreases in Colonic and Systemic Inflammation in Chronic HIV Infection after IL-7 Administration. PLoS Pathog. 2014; 10: Article ID e1003890
  • [86]Brenchley JM, Hill BJ, Ambrozak DR, Price DA, Guenaga FJ, Casazza JP et al.. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004; 78:1160-8.
  • [87]Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B et al.. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009; 15:893-900.
  • [88]Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990; 61:213-22.
  • [89]Tran TA, de Goer de Herve MG, Hendel-Chavez H, Dembele B, Le Nevot E, Abbed K et al.. Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS One. 2008; 3: Article ID e3305
  • [90]Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR et al.. Both CD31(+) and CD31 naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis. 2010; 202:1738-48.
  • [91]Oswald-Richter K, Grill SM, Shariat N, Leelawong M, Sundrud MS, Haas DW et al.. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol. 2004; 2: Article ID E198
  • [92]Antons AK, Wang R, Oswald-Richter K, Tseng M, Arendt CW, Kalams SA et al.. Naive precursors of human regulatory T cells require FoxP3 for suppression and are susceptible to HIV infection. J Immunol. 2008; 180:764-73.
  • [93]Loke P, Favre D, Hunt PW, Leung JM, Kanwar B, Martin JN et al.. Correlating cellular and molecular signatures of mucosal immunity that distinguish HIV controllers from noncontrollers. Blood. 2010; 115:e20-32.
  • [94]Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat Rev Immunol. 2009; 9:883-9.
  • [95]Wang X, Xu H, Gill AF, Pahar B, Kempf D, Rasmussen T et al.. Monitoring alpha4beta7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol. 2009; 2:518-26.
  • [96]Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, Kettaf N et al.. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity. 2004; 21:757-68.
  • [97]Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol. 2013; 13:831-8.
  • [98]Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011; 62:141-55.
  • [99]Vrisekoop N, van Gent R, de Boer AB, Otto SA, Borleffs JC, Steingrover R et al.. Restoration of the CD4 T cell compartment after long-term highly active antiretroviral therapy without phenotypical signs of accelerated immunological aging. J Immunol. 2008; 181:1573-81.
  • [100]Lu I, Eberhard J, Ahmad F, Bhatnagar N, Behrens G, Jacobs R et al.. Elevated CD57 and CD95 expressions are associated with lower numbers of CD4(+) recent thymic emigrants in HIV-1 infected immune responders following antiretroviral treatment. Immunol Lett. 2014; 158:1-6.
  • [101]Roederer M. Compensation in flow cytometry. Curr Protoc Cytom. 2002;Chapter 1:Unit 1 14.
  文献评价指标  
  下载次数:27次 浏览次数:8次