期刊论文详细信息
Molecular Neurodegeneration
Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis
Anson Pierce2  C Samuel Umbaugh2  Oluwarotimi Folorunso2  Won Kyun Koh1  Sharotka M Simon3  Pei-Yi Lin2 
[1] Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229, USA;George and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA;Rosensteil Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, 02454, USA
关键词: Heat shock factor 1;    Superoxide dismutase;    Protein surface hydrophobicity;    Amyotrophic lateral sclerosis;    Aggregation;   
Others  :  862055
DOI  :  10.1186/1750-1326-8-43
 received in 2013-05-29, accepted in 2013-11-11,  发布年份 2013
PDF
【 摘 要 】

Background

Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel florescence-based proteomic assay using 4,4’-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1and other proteins in situ.

Results

Covalent bisANS labeling of spinal cord extracts revealed that alterations in surface hydrophobicity of H46R/H48Q mutations in SOD1 provoke formation of high molecular weight SOD1 species with lowered solubility, likely due to increased exposure of hydrophobic surfaces. BisANS was docked on the H46R/H48Q SOD1 structure at the disordered copper binding and electrostatic loops of mutant SOD1, but not non-mutant WT SOD1. 16 non-SOD1 proteins were also identified that exhibited altered surface hydrophobicity in the H46R/H48Q mutant mouse model of ALS, including proteins involved in energy metabolism, cytoskeleton, signaling, and protein quality control. Heat shock proteins (HSPs) were also enriched in the detergent-insoluble fractions with SOD1. Given that chaperones recognize proteins with exposed hydrophobic surfaces as substrates and the importance of protein homeostasis in ALS, we crossed SOD1 H46R/H48Q mutant mice with mice over-expressing the heat shock factor 1 (HSF1) transcription factor. Here we showed that HSF1 over-expression in H46R/H48Q ALS mice enhanced proteostasis as evidenced by increased expression of HSPs in motor neurons and astrocytes and increased solubility of mutant SOD1. HSF1 over-expression significantly reduced body weight loss, delayed ALS disease onset, decreases cases of early disease, and increased survival for the 25th percentile in an H46R/H48Q SOD1 background. HSF1 overexpression did not affect macroautophagy in the ALS background, but was associated with maintenance of carboxyl terminus of Hsp70 interacting protein (CHIP) expression which declined in H46R/H48Q mice.

Conclusion

Our results uncover the potential importance of changes in protein surface hydrophobicity of SOD1 and other non-SOD1 proteins in ALS, and how strategies that activate HSF1 are valid therapies for ALS and other age-associated proteinopathies.

【 授权许可】

   
2013 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725010650595.pdf 2460KB PDF download
35KB Image download
176KB Image download
198KB Image download
71KB Image download
25KB Image download
43KB Image download
55KB Image download
56KB Image download
101KB Image download
【 图 表 】

【 参考文献 】
  • [1]Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59-62.
  • [2]Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572-574.
  • [3]Turner BJ, Talbot K: Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 2008, 85:94-134.
  • [4]Valentine JS, Doucette PA, Zittin Potter S: Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annual review of biochemistry 2005, 74:563-593.
  • [5]Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB, Miller LM, Borchelt DR, Valentine JS, Whitelegge JP: Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. The Journal of biological chemistry 2011, 286:2795-2806.
  • [6]Pasinelli P, Brown RH: Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature reviews Neuroscience 2006, 7:710-723.
  • [7]Tiwari A, Liba A, Sohn SH, Seetharaman SV, Bilsel O, Matthews CR, Hart PJ, Valentine JS, Hayward LJ: Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J Biol Chem 2009, 284:27746-27758.
  • [8]Tiwari A, Xu Z, Hayward LJ: Aberrantly increased hydrophobicity shared by mutants of Cu, Zn-superoxide dismutase in familial amyotrophic lateral sclerosis. J Biol Chem 2005, 280:29771-29779.
  • [9]Sanchez de Groot N, Pallares I, Aviles FX, Vendrell J, Ventura S: Prediction of "hot spots" of aggregation in disease-linked polypeptides. BMC Struct Biol 2005, 5:18. BioMed Central Full Text
  • [10]Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM: Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. Journal of molecular biology 2005, 350:379-392.
  • [11]Chaudhuri TK, Gupta P: Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach. Cell Stress Chaperones 2005, 10:24-36.
  • [12]Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B: Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. Embo J 1997, 16:1501-1507.
  • [13]Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ: Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 1993, 75:717-728.
  • [14]Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q: Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 2012, 287:5661-5672.
  • [15]Hohfeld J, Cyr DM, Patterson C: From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2001, 2:885-890.
  • [16]Kaushik S, Cuervo AM: Chaperones in autophagy. Pharmacol Res 2012, 66:484-493.
  • [17]Winkler DD, Schuermann JP, Cao X, Holloway SP, Borchelt DR, Carroll MC, Proescher JB, Culotta VC, Hart PJ: Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q. Biochemistry 2009, 48:3436-3447.
  • [18]Pierce A, Dewaal E, Vanremmen H, Richardson A, Chaudhuri A: A Novel Approach for Screening the Proteome for Changes in Protein Conformation. Biochemistry 2006, 45:3077-3085.
  • [19]Prosinecki V, Faísca PFN, Gomes CM: Conformational States and Protein Stability from a Proteomic Perspective. Current Proteomics 2007, 4:44-52.
  • [20]Pierce AP, de Waal E, McManus LM, Shireman PK, Chaudhuri AR: Oxidation and structural perturbation of redox-sensitive enzymes in injured skeletal muscle. Free Radic Biol Med 2007, 43:1584-1593.
  • [21]Pierce A, Mirzaei H, Muller F, De Waal E, Taylor AB, Leonard S, Van Remmen H, Regnier F, Richardson A, Chaudhuri A: GAPDH is conformationally and functionally altered in association with oxidative stress in mouse models of amyotrophic lateral sclerosis. J Mol Biol 2008, 382:1195-1210.
  • [22]Barrett AD, Kayed R, Jackson GR, Cunningham KA: New vaccine development for chronic brain disease. Neuropsychopharmacology 2010, 35:354.
  • [23]Sarge KD, Murphy SP, Morimoto RI: Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 1993, 13:1392-1407.
  • [24]Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L: Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004, 10:402-405.
  • [25]Phukan J: Arimoclomol, a coinducer of heat shock proteins for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010, 13:482-496.
  • [26]Liu AY, Mathur R, Mei N, Langhammer CG, Babiarz B, Firestein BL: Neuroprotective drug riluzole amplifies the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. J Biol Chem 2011, 286:2785-2794.
  • [27]Yang J, Bridges K, Chen KY, Liu AY: Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 2008, 3:e2864.
  • [28]Pierce A, Wei R, Halade D, Yoo SE, Ran Q, Richardson A: A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice. Biochem Biophys Res Commun 2010, 402:59-65.
  • [29]Xue H, Slavov D, Wischmeyer PE: Glutamine-mediated dual regulation of heat shock transcription factor-1 activation and expression. J Biol Chem 2012, 287:40400-40413.
  • [30]Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, Nalbantoglu J, Strong MJ, Durham HD: High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 2003, 23:5789-5798.
  • [31]Morley JF, Morimoto RI: Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 2004, 15:657-664.
  • [32]Gregory JM, Barros TP, Meehan S, Dobson CM, Luheshi LM: The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PLoS One 2012, 7:e31899.
  • [33]Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V: Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease. J Neurochem 2013, 124:880-893.
  • [34]Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A: Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem 2005, 280:34908-34916.
  • [35]Steele AD, Hutter G, Jackson WS, Heppner FL, Borkowski AW, King OD, Raymond GJ, Aguzzi A, Lindquist S: Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease. Proc Natl Acad Sci USA 2008, 105:13626-13631.
  • [36]Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V: Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease. Journal of neurochemistry 2013, 124:880-893.
  • [37]Di Poto C, Iadarola P, Salvini R, Passadore I, Cereda C, Ceroni M, Bardoni AM: Optimizing separation efficiency of 2-DE procedures for visualization of different superoxide dismutase forms in a cellular model of amyotrophic lateral sclerosis. Electrophoresis 2007, 28:4340-4347.
  • [38]Munch C, Bertolotti A: Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. J Mol Biol 2010, 399:512-525.
  • [39]Antonyuk S, Elam JS, Hough MA, Strange RW, Doucette PA, Rodriguez JA, Hayward LJ, Valentine JS, Hart PJ, Hasnain SS: Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg. Protein Sci 2005, 14:1201-1213.
  • [40]Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitlin J, Hart PJ, Borchelt DR: Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem 2007, 282:345-352.
  • [41]Zetterstrom P, Graffmo KS, Andersen PM, Brannstrom T, Marklund SL: Proteins that bind to misfolded mutant superoxide dismutase-1 in spinal cords from transgenic amyotrophic lateral sclerosis (ALS) model mice. J Biol Chem 2011, 286:20130-20136.
  • [42]Kabuta T, Suzuki Y, Wada K: Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J Biol Chem 2006, 281:30524-30533.
  • [43]Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R: CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 2004, 90:231-244.
  • [44]Kerman A, Liu HN, Croul S, Bilbao J, Rogaeva E, Zinman L, Robertson J, Chakrabartty A: Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol 2010, 119:335-344.
  • [45]Pokrishevsky E, Grad LI, Yousefi M, Wang J, Mackenzie IR, Cashman NR: Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PloS one 2012, 7:e35050.
  • [46]Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury JJ: ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 2010, 5:735-740.
  • [47]Dowjat WK, Kharatishvili M, Costa M: DNA and RNA strand scission by copper, zinc and manganese superoxide dismutases. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 1996, 9:327-335.
  • [48]Jiang W, Han Y, Zhou R, Zhang L, Liu C: DNA is a template for accelerating the aggregation of copper, zinc superoxide dismutase. Biochemistry 2007, 46:5911-5923.
  • [49]Ge WW, Wen W, Strong W, Leystra-Lantz C, Strong MJ: Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. The Journal of biological chemistry 2005, 280:118-124.
  • [50]Lu L, Wang S, Zheng L, Li X, Suswam EA, Zhang X, Wheeler CG, Nabors LB, Filippova N, King PH: Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters Hu antigen R (HuR) and TIA-1-related protein (TIAR): implications for impaired post-transcriptional regulation of vascular endothelial growth factor. The Journal of biological chemistry 2009, 284:33989-33998.
  • [51]Basso M, Samengo G, Nardo G, Massignan T, D'Alessandro G, Tartari S, Cantoni L, Marino M, Cheroni C, De Biasi S, et al.: Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PloS one 2009, 4:e8130.
  • [52]Jeffery CJ: Proteins with neomorphic moonlighting functions in disease. IUBMB Life 2011, 63:489-494.
  • [53]Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, Salachas F, Corcia P, Frochot V, Lacorte JM, et al.: Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010, 11:166-171.
  • [54]de Aguilar JL G, Dupuis L, Oudart H, Loeffler JP: The metabolic hypothesis in amyotrophic lateral sclerosis: insights from mutant Cu/Zn-superoxide dismutase mice. Biomed Pharmacother 2005, 59:190-196.
  • [55]Yoshida T, Nakagawa M: Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 2012, 32:440-446.
  • [56]Voisine C, Pedersen JS, Morimoto RI: Chaperone networks: tipping the balance in protein folding diseases. Neurobiology of disease 2010, 40:12-20.
  • [57]Fan H, Kashi RS, Middaugh CR: Conformational lability of two molecular chaperones Hsc70 and gp96: effects of pH and temperature. Archives of biochemistry and biophysics 2006, 447:34-45.
  • [58]Lee JP, Palfrey HC, Bindokas VP, Ghadge GD, Ma L, Miller RJ, Roos RP: The role of immunophilins in mutant superoxide dismutase-1linked familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America 1999, 96:3251-3256.
  • [59]Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, Wada K: Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 1999, 23:47-51.
  • [60]Day IN, Thompson RJ: UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 2010, 90:327-362.
  • [61]Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr: The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 2002, 111:209-218.
  • [62]Steinacker P, Aitken A, Otto M: 14-3-3 proteins in neurodegeneration. Seminars in cell & developmental biology 2011, 22:696-704.
  • [63]Ge WW, Volkening K, Leystra-Lantz C, Jaffe H, Strong MJ: 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR. Molecular and cellular neurosciences 2007, 34:80-87.
  • [64]Ge F, Li WL, Bi LJ, Tao SC, Zhang ZP, Zhang XE: Identification of novel 14-3-3zeta interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 2010, 9:5848-5858.
  • [65]Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C: Bioinformatic and experimental survey of 14-3-3-binding sites. The Biochemical journal 2010, 427:69-78.
  • [66]Sluchanko NN, Chernik IS, Seit-Nebi AS, Pivovarova AV, Levitsky DI, Gusev NB: Effect of mutations mimicking phosphorylation on the structure and properties of human 14-3-3zeta. Archives of biochemistry and biophysics 2008, 477:305-312.
  • [67]Zhou J, Shao Z, Kerkela R, Ichijo H, Muslin AJ, Pombo C, Force T: Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Molecular and cellular biology 2009, 29:4167-4176.
  • [68]Xu G, Stevens SM Jr, Moore BD, McClung S, Borchelt DR: Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Hum Mol Genet 2013, 22:2765-2774.
  • [69]den Engelsman J, van de Schootbrugge C, Yong J, Pruijn GJ, Boelens WC: Pseudophosphorylated alphaB-crystallin is a nuclear chaperone imported into the nucleus with help of the SMN complex. PLoS One 2013, 8:e73489.
  • [70]Boelens WC, Croes Y, de Jong WW: Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7. Biochim Biophys Acta 2001, 1544:311-319.
  • [71]Julien JP, Kriz J: Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta 2006, 1762:1013-1024.
  • [72]Ilieva H, Polymenidou M, Cleveland DW: Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009, 187:761-772.
  • [73]Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS: Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 2008, 105:7594-7599.
  • [74]Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312:1389-1392.
  • [75]Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR: Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiology of disease 2002, 10:128-138.
  • [76]Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, et al.: Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006, 116:2290-2296.
  • [77]Hefferan MP, Galik J, Kakinohana O, Sekerkova G, Santucci C, Marsala S, Navarro R, Hruska-Plochan M, Johe K, Feldman E, et al.: Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS One 2012, 7:e42614.
  • [78]Shi L, Palleros DR, Fink AL: Protein conformational changes induced by 1,1'-bis(4-anilino-5-naphthalenesulfonic acid): preferential binding to the molten globule of DnaK. Biochemistry 1994, 33:7536-7546.
  • [79]Trott O, Olson AJ: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010, 31:455-461.
  • [80]Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D, Petsko GA: Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences of the United States of America 2006, 103:4675-4680.
  文献评价指标  
  下载次数:23次 浏览次数:8次