期刊论文详细信息
Respiratory Research
Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs
Matthias David1  Serge C Thal1  Marc Bodenstein1  Arno Schad2  Bastian Duenges1  Tanghua Liu1  Rainer Thomas1  Erik K Hartmann1  Alexander Ziebart1 
[1] Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Langenbeckstr. 1, Mainz, 55131, Germany;Institute of Pathology, Medical Centre of the Johannes Gutenberg-University, Langenbeckstr. 1, Mainz, 55131, Germany
关键词: Pig model;    Volume controlled ventilation;    Pressure support ventilation;    Sepsis-induced lung injury;    ARDS;   
Others  :  1137272
DOI  :  10.1186/s12931-014-0101-6
 received in 2014-05-27, accepted in 2014-08-18,  发布年份 2014
PDF
【 摘 要 】

Background

In moderate acute respiratory distress syndrome (ARDS) several studies support the usage of assisted spontaneous breathing modes. Only limited data, however, focus on the application in systemic sepsis and developing lung injury. The present study examines the effects of immediate initiation of pressure support ventilation (PSV) in a model of sepsis-induced ARDS.

Methods

18 anesthetized pigs received a two-staged continuous lipopolysaccharide infusion to induce lung injury. The animals were randomly assigned to PSV or volume controlled (VCV) lung protective ventilation (tidal volume each 6 ml kg-1, n = 2x9) over six hours. Gas exchange parameters, hemodynamics, systemic inflammation, and ventilation distribution by multiple inert gas elimination and electrical impedance tomography were assessed. The post mortem analysis included histopathological scoring, wet to dry ratio, and alveolar protein content.

Results

Within six hours both groups developed a mild to moderate ARDS with comparable systemic inflammatory response and without signs of improving gas exchange parameters during PSV. The PSV group showed signs of more homogenous ventilation distribution by electrical impedance tomography, but only slightly less hyperinflated lung compartments by multiple inert gas elimination. Post mortem and histopathological assessment yielded no significant intergroup differences.

Conclusions

In a porcine model of sepsis-induced mild ARDS immediate PSV was not superior to VCV. This contrasts with several experimental studies from non-septic mild to moderate ARDS. The present study therefore assumes that not only severity, but also etiology of lung injury considerably influences the response to early initiation of PSV.

【 授权许可】

   
2014 Ziebart et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150315210634958.pdf 616KB PDF download
Figure 6. 28KB Image download
Figure 5. 43KB Image download
20140728095947588.pdf 246KB PDF download
Figure 3. 29KB Image download
Figure 2. 14KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sevransky JE, Levy MM, Marini JJ: Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med 2004, 32:S548-S553.
  • [2]Fan E, Villar J, Slutsky AS: Novel approaches to minimize ventilator-induced lung injury. BMC Med 2013, 11:85. BioMed Central Full Text
  • [3]Matthay MA, Zemans RL: The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 2011, 6:147-163.
  • [4]Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A: Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010, 363:1107-1116.
  • [5]Gama de Abreu M, Guldner A, Pelosi P: Spontaneous breathing activity in acute lung injury and acute respiratory distress syndrome. Curr Opin Anaesthesiol 2012, 25:148-155.
  • [6]Guldner A, Pelosi P, Gama de Abreu M: Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014, 20:69-76.
  • [7]Spieth PM, Guldner A, Beda A, Carvalho N, Nowack T, Krause A, Rentzsch I, Suchantke S, Thal SC, Engelhard K, Kasper M, Koch T, Pelosi P, de Abreu MG: Comparative effects of proportional assist and variable pressure support ventilation on lung function and damage in experimental lung injury. Crit Care Med 2012, 40:2654-2661.
  • [8]Spieth PM, Carvalho AR, Guldner A, Kasper M, Schubert R, Carvalho NC, Beda A, Dassow C, Uhlig S, Koch T, Pelosi P, Gama de Abreu M: Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med 2011, 39:746-755.
  • [9]Graham MR, Gulati H, Kha L, Girling LG, Goertzen A, Mutch WA: Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can J Anaesth 2011, 58:740-750.
  • [10]Roy S, Habashi N, Sadowitz B, Andrews P, Ge L, Wang G, Roy P, Ghosh A, Kuhn M, Satalin J, Gatto LA, Lin X, Dean DA, Vodovotz Y, Nieman G: Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Shock 2013, 39:28-38.
  • [11]Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013, 39:165-228.
  • [12]Bodenstein M, Wang H, Boehme S, Vogt A, Kwiecien R, David M, Markstaller K: Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation. Physiol Meas 2012, 33:1225-1236.
  • [13]Bodenstein M, David M, Markstaller K: Principles of electrical impedance tomography and its clinical application. Crit Care Med 2009, 37:713-724.
  • [14]Hartmann EK, Boehme S, Bentley A, Duenges B, Klein KU, Elsaesser A, Baumgardner JE, David M, Markstaller K: Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. Crit Care 2012, 16:R8. BioMed Central Full Text
  • [15]Hartmann EK, Duenges B, Baumgardner JE, Markstaller K, David M: Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Med 2013, 39:1313-1317.
  • [16]Spieth PM, Knels L, Kasper M, Domingues Quelhas A, Wiedemann B, Lupp A, Hubler M, Neto AG, Koch T, Gama de Abreu M: Effects of vaporized perfluorohexane and partial liquid ventilation on regional distribution of alveolar damage in experimental lung injury. Intensive Care Med 2007, 33:308-314.
  • [17]Matute-Bello G, Frevert CW, Martin TR: Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008, 295:L379-L399.
  • [18]Hancock RE, Scott MG: The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000, 97:8856-8861.
  • [19]Muller-Leisse C, Klosterhalfen B, Hauptmann S, Simon HB, Kashefi A, Andreopoulos D, Kirkpatrick CJ, Gunther RW: Computed tomography and histologic results in the early stages of endotoxin-injured pig lungs as a model for adult respiratory distress syndrome. Invest Radiol 1993, 28:39-45.
  • [20]Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M: A comparison among animal models of acute lung injury. Crit Care Med 1998, 26:912-916.
  • [21]Carvalho AR, Spieth PM, Pelosi P, Beda A, Lopes AJ, Neykova B, Heller AR, Koch T, Gama de Abreu M: Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow. Anesth Analg 2009, 109:856-865.
  • [22]Spieth PM, Carvalho AR, Guldner A, Pelosi P, Kirichuk O, Koch T, de Abreu MG: Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 2009, 110:342-350.
  • [23]Spieth PM, Guldner A, Huhle R, Beda A, Bluth T, Schreiter D, Ragaller M, Gottschlich B, Kiss T, Jaber S, Pelosi P, Koch T, Gama de Abreu M: Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care 2013, 17:R261. BioMed Central Full Text
  • [24]Kiss T, Guldner A, Bluth T, Uhlig C, Spieth PM, Markstaller K, Ullrich R, Jaber S, Santos JA, Mancebo J, Camporota L, Beale R, Schettino G, Saddy F, Vallverdú I, Wiedemann B, Koch T, Schultz MJ, Pelosi P, de Abreu MG: Rationale and study design of ViPS - variable pressure support for weaning from mechanical ventilation: study protocol for an international multicenter randomized controlled open trial. Trials 2013, 14:363. BioMed Central Full Text
  • [25]Schadler D, Elke G, Engel C, Bogatsch H, Frerichs I, Kuhlen R, Rossaint R, Quintel M, Scholz J, Brunkhorst FM, Loeffler M, Reinhart K, Weiler N: Ventilatory strategies in septic patients. Results from a nationwide observational trial. Anaesthesist 2013, 62:27-33.
  • [26]Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, Von Spiegel T, Mutz N: Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001, 164:43-49.
  • [27]Brander L, Slutsky AS: Assisted spontaneous breathing during early acute lung injury. Crit Care 2006, 10:102. BioMed Central Full Text
  • [28]Gilstrap D, Macintyre N: Patient-ventilator interactions. Implications for clinical management. Am J Respir Crit Care Med 2013, 188:1058-1068.
  • [29]Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A: Pressure support ventilation in patients with acute lung injury. Crit Care Med 2000, 28:1269-1275.
  • [30]Chanques G, Kress JP, Pohlman A, Patel S, Poston J, Jaber S, Hall JB: Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013, 41:2177-2187.
  • [31]Richard JC, Lyazidi A, Akoumianaki E, Mortaza S, Cordioli RL, Lefebvre JC, Rey N, Piquilloud L, Sferrazza Papa GF, Mercat A, Brochard L: Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 2013, 39:2003-2010.
  • [32]Fernandez-Bustamante A, Easley RB, Fuld M, Mulreany D, Hoffman EA, Simon BA: Regional aeration and perfusion distribution in a sheep model of endotoxemic acute lung injury characterized by functional computed tomography imaging. Crit Care Med 2009, 37:2402-2411.
  • [33]Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y: The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013, 41:536-545.
  • [34]Neumann P, Hedenstierna G: Ventilation-perfusion distributions in different porcine lung injury models. Acta Anaesthesiol Scand 2001, 45:78-86.
  • [35]Easley RB, Mulreany DG, Lancaster CT, Custer JW, Fernandez-Bustamante A, Colantuoni E, Simon BA: Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury. Anesthesiology 2009, 111:1065-1074.
  • [36]Fagerberg A, Sondergaard S, Karason S, Aneman A: Electrical impedance tomography and heterogeneity of pulmonary perfusion and ventilation in porcine acute lung injury. Acta Anaesthesiol Scand 2009, 53:1300-1309.
  • [37]Cordioli RL, Akoumianaki E, Brochard L: Nonconventional ventilation techniques. Curr Opin Crit Care 2013, 19:31-37.
  文献评价指标  
  下载次数:37次 浏览次数:17次