| Molecular Neurodegeneration | |
| Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53 | |
| Diego Centonze4  Jelena Drulovic1  Roberto Furlan2  Gianvito Martino2  Luca Battistini4  Sagit Weiss4  Raffaele Mancino3  Annamaria Finardi2  Fabio Buttari4  Gabriella Ruocco4  Francesca Barbieri4  Elisabetta Volpe4  Giulia Macchiarulo4  Valeria Studer4  Caterina Motta5  Silvia Rossi5  | |
| [1] Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia;Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy;Clinica Oculistica, Dipartimento di Biopatologia, Università Tor Vergata, Rome, Italy;Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Rome, Italy;IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy | |
| 关键词: Tumor necrosis factor-α; Synaptic transmission; MS; Inflammation; Glutamate; Apoptosis; | |
| Others : 1138622 DOI : 10.1186/1750-1326-9-56 |
|
| received in 2014-09-24, accepted in 2014-12-03, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Understanding how inflammation causes neuronal damage is of paramount importance in multiple sclerosis (MS) and in other neurodegenerative diseases. Here we addressed the role of the apoptotic cascade in the synaptic abnormalities and neuronal loss caused by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α) in brain tissues, and disease progression caused by inflammation in relapsing-remitting MS (RRMS) patients.
Results
The effect of IL-1β, but not of TNF-α, on glutamate-mediated excitatory postsynaptic currents was blocked by pifithrin-α (PFT), inhibitor of p53. The protein kinase C (PKC)/transient receptor potential vanilloid 1 (TRPV1) pathway was involved in IL-1β-p53 interaction at glutamatergic synapses, as pharmacological modulation of this inflammation-relevant molecular pathway affected PFT effects on the synaptic action of IL-1β. IL-1β-induced neuronal swelling was also blocked by PFT, and IL-1β increased the expression of p21, a canonical downstream target of activated p53.
Consistent with these in vitro results, the Pro/Pro genotype of p53, associated with low efficiency of transcription of p53-regulated genes, abrogated the association between IL-1β cerebrospinal fluid (CSF) levels and disability progression in RRMS patients. The interaction between p53 and CSF IL-1β was also evaluated at the optical coherence tomography (OCT), showing that IL-1β-driven neurodegenerative damage, causing alterations of macular volume and of retinal nerve fibre layer thickness, was modulated by the p53 genotype.
Conclusions
Inflammatory synaptopathy and neurodegeneration caused by IL-1β in RRMS patients involve the apoptotic cascade. Targeting IL-1β-p53 interaction might result in significant neuroprotection in MS.
【 授权许可】
2014 Rossi et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150320065403318.pdf | 1015KB | ||
| Figure 3. | 91KB | Image | |
| Figure 2. | 131KB | Image | |
| hess-20-3799-2016.pdf | 5051KB |
【 图 表 】
Figure 2.
Figure 3.
【 参考文献 】
- [1]Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S: Human CD4 + CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 2007, 109:632-642.
- [2]Fazzino F, Urbina M, Cedeño N, Lima L: Fluoxetine treatment to rats modifies serotonin transporter and cAMP in lymphocytes, CD4+ and CD8+ subpopulations and interleukins 2 and 4. Int Immunopharmacol 2009, 9:463-467.
- [3]Saha B, Mondal AC, Majumder J, Basu S, Dasgupta PS: Physiological concentrations of dopamine inhibit the proliferation and cytotoxicity of human CD4+ and CD8+ T cells in vitro: a receptor-mediated mechanism. Neuroimmunomodulation 2001, 9:23-33.
- [4]Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G: Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29:3442-3452.
- [5]Haji N, Mandolesi G, Gentile A, Sacchetti L, Fresegna D, Rossi S, Musella A, Sepman H, Motta C, Studer V, De Chiara V, Bernardi G, Strata P, Centonze D: TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 2012, 237:296-303.
- [6]Raison CL, Borisov AS, Woolwine BJ, Massung B, Vogt G, Miller AH: Interferon-alpha effects on diurnal hypothalamic-pituitary-adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol Psychiatry 2010, 15:535-547.
- [7]Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D: Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 2012, 71:76-83.
- [8]Rossi S, Sacchetti L, Napolitano F, De Chiara V, Motta C, Studer V, Musella A, Barbieri F, Bari M, Bernardi G, Maccarrone M, Usiello A, Centonze D: Interleukin-1β causes anxiety by interacting with the endocannabinoid system. J Neurosci 2012, 32:13896-13905.
- [9]Rossi S, Studer V, Motta C, De Chiara V, Barbieri F, Bernardi G, Centonze D: Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler 2012, 18:1633-1635.
- [10]Zhu CB, Blakely RD, Hewlett WA: The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006, 31:2121-2131.
- [11]Ellwardt E, Zipp F: Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 2014, 262PA:8-17.
- [12]Millington C, Sonego S, Karunaweera N, Rangel A, Aldrich-Wright R, Campbell IL, Gyengesi E, Münch G: Chronic neuroinflammation in Alzheimer’s disease: new perspectives on animal models and promising candidate drugs. Biomed Res Int 2014, 2014:309129.
- [13]Froger N, Orellana JA, Calvo CF, Amigou E, Kozoriz MG, Naus CC, Sáez JC, Giaume C: Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuro- protective. Mol Cell Neurosci 2010, 45:37-46.
- [14]Lai AY, Swayze RD, El-Husseini A, Song C: Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J Neuroimmunol 2006, 175:97-106.
- [15]Tolosa L, Caraballo-Miralles V, Olmos G, Lladó J: TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-kB. Mol Cell Neurosci 2011, 46:176-186.
- [16]Rossi S, Studer V, Motta C, Germani G, Macchiarulo G, Buttari F, Mancino R, Castelli M, De Chiara V, Weiss S, Martino G, Furlan R, Centonze D: Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation 2014, 11:32. BioMed Central Full Text
- [17]Espín R, Roca FJ, Candel S, Sepulcre MP, González-Rosa JM, Alcaraz-Pérez F, Meseguer J, Cayuela ML, Mercader N, Mulero V: TNF-α receptors regulate vascular homeostasis in zebra fish through a caspase-8, caspase-2 and P53 apoptotic program that by passes caspase-3. Dis Model Mech 2013, 6:383-396.
- [18]Goretsky T, Dirisina R, Sinh P, Mittal N, Managlia E, Williams DB, Posca D, Ryu H, Katzman RB, Barrett TA: p53 mediates TNF-α-induced epithelial cell apoptosis in IBD. Am J Pathol 2012, 181:1306-1315.
- [19]Nalca A, Rangnekar VM: The G1-phase growth-arresting action of interleukin-1 is independent of p53 and p21/WAF1 function. J Biol Chem 1998, 273:30517-30523.
- [20]Song K, Fukushima P, Seth P, Sinha BK: Role of p53 and apoptosis in sensitization of cis-diammine dichloroplatinum antitumor activity by interleukin-1 in ovarian carcinoma cells. Int J Oncol 1998, 12:299-304.
- [21]Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F: Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012, 7:e40879.
- [22]Wang C, Wang MW, Tashiro S, Onodera S, Ikejima T: Evodiamine induced human melanoma A375-S2 cell death partially through interleukin 1 mediated pathway. Biol Pharm Bull 2005, 28:984-989.
- [23]Aloyz RS, Bamji SX, Pozniak CD, Atwal J, Kaplan DR: p53 is essential for developmental neuron death as regulated by TrkA and p75 neurotrophin receptors. J Cell Biol 1998, 143:1691-1703.
- [24]Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, Ancolio K, Checler F: Wild-type and mutated presenilins 2 trigger p53-dependent apop- tosis and down regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci U S A 2002, 99:4043-4048.
- [25]Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP: A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 2001, 77:220-228.
- [26]Hong LZ, Zhao XY, Zhang HL: p53-mediated neuronal cell death in ischemic brain injury. Neurosci Bull 2010, 26:232-240.
- [27]Morrison RS, Kinoshita Y: The role of p53 in neuronal cell death. Cell Death Differ 2000, 7:868-879.
- [28]Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A, Del Sal G, Syed N, Smith P, Gasco M, Crook T, Lu X: iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 2006, 38:1133-1141.
- [29]Bonafé M, Salvioli S, Barbi C, Trapassi C, Tocco F, Storci G, Invidia L, Vannini I, Rossi M, Marzi E, Mishto M, Capri M, Olivieri F, Antonicelli R, Memo M, Uberti D, Nacmias B, Sorbi S, Monti D, Franceschi C: The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death Differ 2004, 11:962-973.
- [30]Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M: The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003, 33:357-365.
- [31]Jeong BS, Hu W, Belyi V, Rabadan R, Levine AJ: Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J 2010, 24:1347-1353.
- [32]Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M, Centonze D: TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 2009, 40:89-97.
- [33]Weinberg WC, Denning MF: P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med 2002, 13:453-464.
- [34]Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J 2011, 30:4921-4930.
- [35]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
- [36]Geurts JJ, Barkhof F: Grey matter pathology in multiple sclerosis. Lancet Neurol 2008, 7:841-851.
- [37]Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N: Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 2008, 131:288-303.
- [38]Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G: The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 2010, 17:1083-1091.
- [39]Choi DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1:623-634.
- [40]Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-alpha. Nature 2006, 440:1054-1059.
- [41]Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D: Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 2013, 33:12105-12021.
- [42]Forder JP, Tymianski M: Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience 2009, 158:293-300.
- [43]Olney JW: Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969, 164:719-721.
- [44]Centonze D, Prosperetti C, Barone I, Rossi S, Picconi B, Tscherter A, De Chiara V, Bernardi G, Calabresi P: NR2B-containing NMDA receptors promote the neurotoxic effects of 3-ritropropionic acid but not of rotenone in the striatum. Exp Neurol 2006, 202:470-479.
- [45]Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The capsaicin receptor integrates multiple pain producing stimuli. Neuron 1998, 21:531-543.
- [46]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816-824.
- [47]Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288:306-313.
- [48]Keeble J, Russell F, Curtis B, Starr A, Pintér E, Brain SD: Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum 2005, 52:3248-3256.
- [49]Tóth DM, Szőke E, Bölcskei K, Kvell K, Bender B, Bősze Z, Szolcsányi J, Sándor Z: Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice. Cell Mol Life Sci 2011, 68:2589-2601.
- [50]Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M: Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006, 108:993-1000.
- [51]Dey A, Wong ET, Bist P, Tergaonkar V, Lane DP: Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: implications in lung cancer therapy. Cell Cycle 2007, 6:2178-2185.
- [52]Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ: Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 2008, 4:664-675.
- [53]Barkhof F, Calabresi PA, Miller DH, Reingold SC: Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009, 5:256-266.
- [54]Burkholder BM, Osborne B, Loguidice MJ, Bisker E, Frohman TC, Conger A, Ratchford JN, Warner C, Markowitz CE, Jacobs DA, Galetta SL, Cutter GR, Maguire MG, Calabresi PA, Balcer LJ, Frohman EM: Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 2009, 66:1366-1372.
- [55]Gilman CP, Mattson MP: Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromol Med 2002, 2:197-214.
- [56]Li Z, Sheng M: Caspases in synaptic plasticity. Mol Brain 2012, 5:15. BioMed Central Full Text
- [57]Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M: Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010, 141:859-871.
- [58]Lu C, Wang Y, Furukawa K, Fu W, Ouyang X, Mattson MP: Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses. J Neurochem 2006, 97:1104-1110.
- [59]De Laurenzi V, Raschella G, Barcaroli D, Annicchiarico-Petruzzelli M, Ranalli M, Catani MV, Tanno B, Costanzo A, Levrero M, Melino G: Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 2000, 275:15226-15231.
- [60]D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F: Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011, 14:69-76.
- [61]Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005, 58:840-846.
- [62]Kurtzke JF: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983, 33:1444-1452.
- [63]Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, et al.: Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology 2005, 64:1144-1151.
- [64]Rossi S, Mancino R, Bergami A, Mori F, Castelli M, De Chiara V, Studer V, Mataluni G, Sancesario G, Parisi V, Kusayanagi H, Bernardi G, Nucci C, Bernardini S, Martino G, Furlan R, Centonze D: Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Mult Scler 2011, 17:1301-1312.
- [65]Hasan SK, Buttari F, Ottone T, Voso MT, Hohaus S, Marasco E, Mantovani V, Garagnani P, Sanz MA, Cicconi L, Bernardi G, Centonze D, Lo-Coco F: Risk of acute promyelocytic leukemia in multiple sclerosis: coding variants of DNA repair genes. Neurology 2011, 76:1059-1065.
PDF