期刊论文详细信息
Translational Neurodegeneration
Development of stem cell-based therapy for Parkinson’s disease
Qingfa Chen1  Nan Zhang1  Xianjie Lu1  Jing Duan1  Junyu Gao1  Deborah Baremberg1  Fabin Han1 
[1] Centre for Stem Cells and Regenerative Medicine, The Liaocheng People’s Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong 252000, China
关键词: Induced dopamine neuron;    Induced pluripotent stem cell;    Human embryonic stem cells;    Neural stem cell;    Dopamine neuron;    Parkinson’s disease;   
Others  :  1224137
DOI  :  10.1186/s40035-015-0039-8
 received in 2015-05-18, accepted in 2015-08-24,  发布年份 2015
PDF
【 摘 要 】

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders of aging, characterized by the degeneration of dopamine neurons (DA neurons) in the substantial nigra, leading to the advent of both motor symptoms and non-motor symptoms. Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy. Even though both categories are effective in treating PD patients, the disease progression cannot be stopped. The research advance into cell therapies provides exciting potential for the treatment of PD. Current cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons (iDA neurons). Here, we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.

【 授权许可】

   
2015 Han et al.

【 预 览 】
附件列表
Files Size Format View
20150908081836786.pdf 739KB PDF download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, et al.: Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000, 54(11 Suppl 5):S21-3.
  • [2]Cheng HC, Ulane CM, Burke RE: Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 2010, 67(6):715-25.
  • [3]Chaudhuri KR, Healy DG, Schapira AH: Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006, 5(3):235-45.
  • [4]Olanow CW, Watts RL, Koller WC: An algorithm (decision tree) for the management of Parkinson’s disease (2001): treatment guidelines. Neurology 2001, 56(11 Suppl 5):S1-88.
  • [5]Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al.: Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004, 351(24):2498-508.
  • [6]Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, et al.: Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995, 345(8942):91-5.
  • [7]Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, et al.: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 2011, 21(3):518-29.
  • [8]Buttery PC, Barker RA: Treating Parkinson’s disease in the 21st century: can stem cell transplantation compete? J Comp Neurol 2014, 522(12):2802-16.
  • [9]Han F, Wang W, Chen B, Chen C, Li S, Lu X, et al.: Human induced pluripotent stem cell–derived neurons improve motor asymmetry in a 6-hydroxydopamine–induced rat model of Parkinson’s disease. Cytotherapy 2015, 17(5):665-79.
  • [10]Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B: Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 2009, 169(8):919-26.
  • [11]Lesage S, Brice A: Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009, 18(R1):R48-59.
  • [12]Chen ML, Lin CH, Lee MJ, Wu RM: BST1 rs11724635 interacts with environmental factors to increase the risk of Parkinson’s disease in a Taiwanese population. Parkinsonism Relat Disord 2014, 20(3):280-3.
  • [13]Lucchini RG, Martin CJ, Doney BC: From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. Neuromolecular Med 2009, 11(4):311-21.
  • [14]Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, et al.: Parkinson disease in twins: an etiologic study. JAMA 1999, 281(4):341-6.
  • [15]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al.: Mutation in the alpha- synuclein gene identified in families with Parkinson’s disease. Science 1997, 276(5321):2045-7.
  • [16]Marques O, Outeiro TF: Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 2012, 3:e350.
  • [17]Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 2006, 116(7):1744-54.
  • [18]Damier P, Hirsch EC, Agid Y, Graybiel AM: The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999, 122(Pt 8):1437-48.
  • [19]Obeso JA, Rodriguez-Oroz MC, Rodriguez M, DeLong MR, Olanow CW: Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann Neurol 2000, 47(4 Suppl 1):S22-32.
  • [20]Gibb WR, Lees AJ: The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988, 51(6):745-52.
  • [21]Dawson TM, Ko HS, Dawson VL: Genetic animal models of Parkinson’s disease. Neuron 2010, 66(5):646-61.
  • [22]Lees AJ, Hardy J, Revesz T: Parkinson’s disease. Lancet 2009, 373(9680):2055-66.
  • [23]Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P: Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 2001, 56(6):730-6.
  • [24]Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD: Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 2011, 6(5):e19025.
  • [25]Blandini F, Cova L, Armentero MT, Zennaro E, Levandis G, Bossolasco P, et al.: Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant 2010, 19(2):203-17.
  • [26]Shukla S, Chaturvedi RK, Seth K, Roy NS, Agrawal AK: Enhanced survival and function of neural stem cells-derived dopaminergic neurons under influence of olfactory ensheathing cells in parkinsonian rats. J Neurochem 2009, 109(2):436-51.
  • [27]Meyer AK, Maisel M, Hermann A, Stirl K, Storch A: Restorative approaches in Parkinson’s disease: which cell type wins the race? J Neurol Sci 2010, 289(1–2):93-103.
  • [28]Han F: The applications of the induced pluripotent stem cells in studying the neurodegenerative diseases. Chinese Journal of Cell Biology 2012, 34(5):13.
  • [29]Tsunemoto RK, Eade KT, Blanchard JW, Baldwin KK: Forward engineering neuronal diversity using direct reprogramming. EMBO J 2015, 34(11):1445-55.
  • [30]Altman J, Das GD: Post-natal origin of microneurones in the rat brain. Nature 1965, 207(5000):953-6.
  • [31]Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97(6):703-16.
  • [32]Taupin P, Gage FH: Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 2002, 69(6):745-9.
  • [33]Svendsen CN, Caldwell MA, Ostenfeld T: Human neural stem cells: isolation, expansion and transplantation. Brain Pathol 1999, 9(3):499-513.
  • [34]Kallur T, Darsalia V, Lindvall O, Kokaia Z: Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 2006, 84(8):1630-44.
  • [35]Nishino H, Hida H, Takei N, Kumazaki M, Nakajima K, Baba H: Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol 2000, 164(1):209-14.
  • [36]Kim HJ, McMillan E, Han F, Svendsen CN. Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells. 2009;27(2):390–8. doi:10.1634/stemcells.2007-1047.
  • [37]Grimes DA, Han F, Panisset M, Racacho L, Xiao F, Zou R, et al.: Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov Disord 2006, 21(7):906-9.
  • [38]Shim JW, Park CH, Bae YC, Bae JY, Chung S, Chang MY, et al.: Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 2007, 25(5):1252-62.
  • [39]Bjorklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD: Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 1980, 199(2):307-33.
  • [40]Studer L, Tabar V, McKay RD: Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998, 1(4):290-5.
  • [41]Monni E, Cusulin C, Cavallaro M, Lindvall O, Kokaia Z: Human fetal striatum-derived neural stem (NS) cells differentiate to mature neurons in vitro and in vivo. Curr Stem Cell Res Ther 2014, 9(4):338-46.
  • [42]Redmond DE Jr, Vinuela A, Kordower JH, Isacson O: Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease. Neurobiol Dis 2008, 29(1):103-16.
  • [43]Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al.: Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990, 247(4942):574-7.
  • [44]Lindvall O, Sawle G, Widner H, Rothwell JC, Bjorklund A, Brooks D, et al.: Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994, 35(2):172-80.
  • [45]Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al.: Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001, 344(10):710-9.
  • [46]Lindvall O, Bjorklund A: Cell therapy in Parkinson’s disease. NeuroRx 2004, 1(4):382-93.
  • [47]Barker RA, Barrett J, Mason SL, Bjorklund A: Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 2013, 12(1):84-91.
  • [48]Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al.: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003, 54(3):403-14.
  • [49]Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, et al.: Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med 2010, 51(1):7-15.
  • [50]Hagell P, Brundin P: Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001, 60(8):741-52.
  • [51]Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D: Serotonin neuron transplants exacerbate L- DOPA-induced dyskinesias in a rat model of Parkinson’s disease. J Neurosci 2007, 27(30):8011-22.
  • [52]Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, et al.: Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2010, 2(38):38ra46.
  • [53]Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, et al.: Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 2008, 14(5):507.
  • [54]Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al.: Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008, 14(5):501-3.
  • [55]Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW: Lewy body-like pathology in long- term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008, 14(5):504-6.
  • [56]Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE: Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006, 108(6):2114-20.
  • [57]Michel-Monigadon D, Nerriere-Daguin V, Leveque X, Plat M, Venturi E, Brachet P, et al.: Minocycline promotes long-term survival of neuronal transplant in the brain by inhibiting late microglial activation and T-cell recruitment. Transplantation 2010, 89(7):816-23.
  • [58]Moore SF, Guzman NV, Mason SL, Williams-Gray CH, Barker RA: Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO). J Parkinsons Dis 2014, 4(4):671-6.
  • [59]Evans JR, Mason SL, Barker RA: Current status of clinical trials of neural transplantation in Parkinson’s disease. Prog Brain Res 2012, 200:169-98.
  • [60]Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, et al.: Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 2014, 71(1):83-7.
  • [61]Robertson EJ: Derivation and maintenance of embryonic stem cell cultures. Methods Mol Biol 1990, 5:223-36.
  • [62]Trzaska KA, Rameshwar P: Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol 2011, 698:295-303.
  • [63]Ganat YM, Calder EL, Kriks S, Nelander J, Tu EY, Jia F, et al.: Identification of embryonic stem cell- derived midbrain dopaminergic neurons for engraftment. J Clin Invest 2012, 122(8):2928-39.
  • [64]Liu TW, Ma ZG, Zhou Y, Xie JX: Transplantation of mouse CGR8 embryonic stem cells producing GDNF and TH protects against 6-hydroxydopamine neurotoxicity in the rat. Int J Biochem Cell Biol 2013, 45(7):1265-73.
  • [65]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al.: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282(5391):1145-7.
  • [66]Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 2004, 101(34):12543-8.
  • [67]Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, et al.: Dopaminergic differentiation of human embryonic stem cells. Stem Cells 2004, 22(6):925-40.
  • [68]Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, et al.: Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004, 22(7):1246-55.
  • [69]Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, et al.: Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 2005, 23(6):781-90.
  • [70]Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC: Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008, 26(1):55-63.
  • [71]Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L: Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009, 27(3):275-80.
  • [72]Fasano CA, Chambers SM, Lee G, Tomishima MJ, Studer L: Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell 2010, 6(4):336-47.
  • [73]Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al.: Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011, 480(7378):547-51.
  • [74]Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, et al.: Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse 2009, 63(7):541-8.
  • [75]Sanchez-Danes A, Consiglio A, Richaud Y, Rodriguez-Piza I, Dehay B, Edel M, et al.: Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther 2012, 23(1):56-69.
  • [76]Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al.: Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014, 15(5):653-65.
  • [77]Braam SR, Denning C, Matsa E, Young LE, Passier R, Mummery CL: Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat Protoc 2008, 3(9):1435-43.
  • [78]Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, et al.: Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 2004, 22(7):1218-38.
  • [79]Vazin T, Becker KG, Chen J, Spivak CE, Lupica CR, Zhang Y, et al.: A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 2009, 4(8):e6606.
  • [80]Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X: Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 2009, 4(7):e6233.
  • [81]Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH: Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385(6619):810-3.
  • [82]Colman A: Somatic cell nuclear transfer in mammals: progress and applications. Cloning 1999, 1(4):185-200.
  • [83]Jullien J, Pasque V, Halley-Stott RP, Miyamoto K, Gurdon JB: Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol 2011, 12(7):453-9.
  • [84]French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH: Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 2008, 26(2):485-93.
  • [85]Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, et al.: Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells 2009, 11(2):213-23.
  • [86]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-76.
  • [87]Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451(7175):141-6.
  • [88]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318(5858):1917-20.
  • [89]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122(6):947-56.
  • [90]Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008, 26(11):1269-75.
  • [91]Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, et al.: Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 2011, 21(1):196-204.
  • [92]Isobe K, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S: Reprint of “iPSCs, aging and age-related diseases”. N Biotechnol 2015, 32(1):169-79.
  • [93]Kiskinis E, Eggan K: Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010, 120(1):51-9.
  • [94]Zeng X, Couture LA: Pluripotent stem cells for Parkinson’s disease: progress and challenges. Stem Cell Res Ther 2013, 4(2):25.
  • [95]Jung Y, Bauer G, Nolta JA: Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012, 30(1):42-7.
  • [96]Saha K, Jaenisch R: Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 2009, 5(6):584-95.
  • [97]Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci 2008, 105(15):5856-61.
  • [98]Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, et al.: Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 2010, 107(36):15921-6.
  • [99]Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, et al.: Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC‐, hiPSC‐, and non‐human primate iPSC‐derived dopaminergic neurons. Stem Cells 2013, 31(8):1548-62.
  • [100]Ross CA, Akimov SS: Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 2014, 23(R1):R17-26.
  • [101]Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al.: Parkinson’s disease patient- derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009, 136(5):964-77.
  • [102]Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, et al.: LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 2011, 8(3):267-80.
  • [103]Reinhardt P, Schmid B, Burbulla LF, Schondorf DC, Wagner L, Glatza M, et al.: Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013, 12(3):354-67.
  • [104]Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, et al.: Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 2013, 3(3):646-50.
  • [105]Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, et al.: Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 2015, 16(3):269-74.
  • [106]Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science 2008, 322(5903):945-9.
  • [107]Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008, 322(5903):949-53.
  • [108]Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009, 458(7239):771-5.
  • [109]Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al.: Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009, 324(5928):797-801.
  • [110]Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al.: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009, 4(6):472-6.
  • [111]Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, et al.: Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 2011, 121(6):2326-35.
  • [112]Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007, 1(1):55-70.
  • [113]Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007, 448(7151):318-24.
  • [114]Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008, 26(1):101-6.
  • [115]Muller LU, Daley GQ, Williams DA: Upping the ante: recent advances in direct reprogramming. Mol Ther 2009, 17(6):947-53.
  • [116]Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al.: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 2010, 107(9):4335-40.
  • [117]Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, et al.: Differentiation- defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A 2013, 110(51):20569-74.
  • [118]Rodriguez-Piza I, Richaud-Patin Y, Vassena R, Gonzalez F, Barrero MJ, Veiga A, et al.: Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells 2010, 28(1):36-44.
  • [119]Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, et al.: Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 2012, 8(3):388-402.
  • [120]O’Brien C, Laslett AL: Suspended in culture--human pluripotent cells for scalable technologies. Stem Cell Res 2012, 9(2):167-70.
  • [121]Serra M, Brito C, Correia C, Alves PM: Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 2012, 30(6):350-9.
  • [122]Fang R, Liu K, Zhao Y, Li H, Zhu D, Du Y, et al.: Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 2014, 15(4):488-96.
  • [123]Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al.: Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 2011, 476(7359):224-7.
  • [124]Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, et al.: Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 2012, 22(2):321-32.
  • [125]Kim HS, Kim J, Jo Y, Jeon D, Cho YS: Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res 2014, 12(1):60-8.
  • [126]Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, et al.: Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 2011, 9(5):413-9.
  • [127]Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, et al.: Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res 2011, 21(10):1424-35.
  • [128]Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, et al.: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008, 321(5889):699-702.
  • [129]Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008, 26(11):1276-84.
  • [130]Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al.: Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467(7313):285-90.
  • [131]Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471(7336):68-73.
  • [132]Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al.: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341(6146):651-4.
  • [133]Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al.: Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010, 7(4):521-31.
  • [134]Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al.: Somatic coding mutations in human induced pluripotent stem cells. Nature 2011, 471(7336):63-7.
  • [135]Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al.: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011, 8(1):106-18.
  • [136]Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, et al.: Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Genet 2015, 60(2):85-90.
  • [137]Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al.: Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011, 146(2):318-31.
  • [138]Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al.: A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 2014, 4:3594.
  文献评价指标  
  下载次数:6次 浏览次数:16次