| Particle and Fibre Toxicology | |
| Recently discovered Aedes japonicus japonicus (Diptera: Culicidae) populations in The Netherlands and northern Germany resulted from a new introduction event and from a split from an existing population | |
| Doreen Werner3  Helge Kampen5  Enrih Merdić4  Katja Kalan2  Adolfo Ibáñez-Justicia1  Dorothee E Zielke3  | |
| [1] National Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs Wageningen, Wageningen, The Netherlands;University of Primorska, Koper, Slovenia;Institute for Land Use Systems, Leibniz-Centre for Agricultural Landscape Research, Eberswalder Straße 84, Muencheberg, 15374, Germany;University of Osijek, Osijek, Croatia;Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany | |
| 关键词: nad4 haplotypes; Population genetics; Microsatellites; Europe; Asian bush mosquito; Aedes japonicus japonicus; | |
| Others : 1147582 DOI : 10.1186/s13071-015-0648-1 |
|
| received in 2014-10-16, accepted in 2015-01-08, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Originally native to East Asia, Aedes japonicus japonicus, a potential vector of several arboviruses, has become one of the most invasive mosquito species in the world. After having established in the USA, it is now spreading in Europe, with new populations emerging. In contrast to the USA, the introduction pathways and modes of dispersal in Europe are largely obscure.
Methods
To find out if two recently detected populations of Ae. j. japonicus in The Netherlands and northern Germany go back to new importations or to movements within Europe, the genetic makeup of mosquito specimens from all known European populations was compared. For this purpose, seven microsatellite loci from a representative number of mosquito specimens were genotyped and part of their mitochondrial nad4 gene sequenced.
Results
A novel nad4 haplotype found in the newly discovered Dutch population of Ae. j. japonicus suggests that this population is not closely related to the other European populations but has emanated from a further introduction event. With five nad4 haplotypes, the Dutch population also shows a very high genetic diversity indicating that either the founder population was very large or multiple introductions took place. By contrast, the recently detected North German population could be clearly assigned to one of the two previously determined European Ae. j. japonicus microsatellite genotypes and shows nad4 haplotypes that are known from West Germany.
Conclusion
As the European populations of Ae. j. japonicus are geographically separated but genetically mixed, their establishment must be attributed to passive transportation. In addition to intercontinental shipment, it can be assumed that human activities are also responsible for medium- and short-distance overland spread. A better understanding of the processes underlying the introduction and spread of this invasive species will help to increase public awareness of the human-mediated displacement of mosquitoes and to find strategies to avoid it.
【 授权许可】
2015 Zielke et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150404022417115.pdf | 1051KB | ||
| Figure 4. | 23KB | Image | |
| Figure 3. | 27KB | Image | |
| Figure 2. | 50KB | Image | |
| Figure 1. | 40KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Reinert JF, Harbach RE, Kitching IJ. Phylogeny and classification of Finlaya and allied taxa (Diptera: Culicidae: Aedini) based on morphological data from all life stages. Zool J Linn Soc. 2006; 148:1-101.
- [2]GISD (Global invasive species database). http://www.issg.org/database/welcome, accessed 19 November 2014.
- [3]Laird M, Calder L, Thornton R, Syme R, Holder P, Mogi M. Japanese Aedes albopictus among four mosquito species reaching New Zealand in used tires. J Am Mosq Control Assoc. 1994; 10:14-23.
- [4]Peyton E, Campbell SR, Candeletti TM, Romanowski M, Crans WJ. Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc. 1999; 15:238-41.
- [5]Munstermann L, Andreadis T. Aedes japonicus in Connecticut. Vector Ecol Newsl. 1999; 30:7-8.
- [6]Widdel AK, McCuiston LJ, Crans WJ, Kramer LD, Fonseca DM. Finding needles in the haystack: single copy microsatellite loci for Aedes japonicus (Diptera: Culicidae). Am J Trop Med Hyg. 2005; 73:744-8.
- [7]Neitzel DF, Johnson KA, Brogren S, Kemperman MM. First collection records of Aedes japonicus in Minnesota. J Am Mosq Control Assoc. 2009; 25:367-9.
- [8]Kampen H, Werner D. Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901)(Diptera: Culicidae) becomes invasive. Parasit Vectors. 2014; 7:59. BioMed Central Full Text
- [9]Thielman A, Hunter FF. Establishment of Ochlerotatus japonicus (Diptera: Culicidae) in Ontario, Canada. J Med Entomol. 2006; 43:138-42.
- [10]Schaffner F, Chouin S, Guilloteau J. First record of Ochlerotatus (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc. 2003; 19:1-5.
- [11]Versteirt V, Schaffner F, Garros C, Dekoninck W, Coosemans M, Van Bortel W. Introduction and establishment of the exotic mosquito species Aedes japonicus japonicus (Diptera: Culicidae) in Belgium. J Med Entomol. 2009; 46:1464-7.
- [12]Schaffner F, Kaufmann C, Hegglin D, Mathis A. The invasive mosquito Aedes japonicus in Central Europe. Med Vet Entomol. 2009; 23:448-51.
- [13]Becker N, Huber K, Pluskota B, Kaiser A. Ochlerotatus japonicus japonicus – a newly established neozoan in Germany and a revised list of the German mosquito fauna. Eur Mosq Bull. 2011; 29:88-102.
- [14]Schneider K. Breeding of Ochlerotatus japonicus japonicus (Diptera: Culicidae) 80 km north of its known range in southern Germany. Eur Mosq Bull. 2011; 29:129-32.
- [15]Seidel B, Duh D, Nowotny N, Allerberger F. First record of the mosquitoes Aedes (Ochlerotatus) japonicus japonicus (Theobald, 1901) in Austria and Slovenia in 2011 and for Aedes (Stegomyia) albopictus (Skuse, 1895) in Austria 2012. Entomol Zeitschr. 2012; 122:223-6. [in German]
- [16]Kampen H, Zielke D, Werner D. A new focus of Aedes japonicus japonicus (Theobald, 1901) (Diptera: Culicidae) distribution in Western Germany: rapid spread or a further introduction event? Parasit Vectors. 2012; 5:284. BioMed Central Full Text
- [17]Werner D, Kampen H. The further spread of Aedes japonicus japonicus (Diptera: Culicidae) towards northern Germany. Parasitol Res. 2013; 112:3665-8.
- [18]Ibáñez-Justicia A, Kampen H, Braks M, Schaffner F, Steeghs M, Werner D et al.. First report of established population of Aedes japonicus japonicus (Theobald, 1901) (Diptera: Culicidae) in the Netherlands. J Eur Mosq Control Assoc. 2014; 32:9-13.
- [19]Sardelis MR, Turell MJ. Ochlerotatus j. japonicus in Frederick County, Maryland: discovery, distribution, and vector competence for West Nile virus. J Am Mosq Control Assoc. 2001; 17:137-41.
- [20]Takashima I, Rosen L. Horizontal and vertical transmission of Japanese encephalitis virus by Aedes japonicus (Diptera: Culicidae). J Med Entomol. 1989; 26:454-8.
- [21]Molaei G, Farajollahi A, Scott JJ, Gaugler R, Andreadis TG. Human bloodfeeding by the recently introduced mosquito, Aedes japonicus japonicus, and public health implications. J Am Mosq Control Assoc. 2009; 25:210-4.
- [22]Sardelis MR, Dohm DJ, Pagac B, Andre RG, Turell MJ. Experimental transmission of eastern equine encephalitis virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol. 2002; 39:480-4.
- [23]Sardelis MR, Turell MJ, Andre RG. Laboratory transmission of La Crosse virus by Ochlerotatus j. japonicus (Diptera: Culicidae). J Med Entomol. 2002; 39:635-9.
- [24]Turell MJ, Byrd BD, Harrison BA. Potential for populations of Aedes j. japonicus to transmit Rift Valley fever virus in the USA. J Am Mosq Control Assoc. 2013; 29:133-7.
- [25]Schaffner F, Vazeille M, Kaufmann C, Failloux A-B, Mathis A. Vector competence of Aedes japonicus for chikungunya and dengue viruses. Eur Mosq Bull. 2011; 29:141-2.
- [26]Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979; 76:1967-71.
- [27]Fonseca DM, Campbell S, Crans WJ, Mogi M, Miyagi I, Toma T et al.. Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol. 2001; 38:135-46.
- [28]Guidelines for the surveillance of invasive mosquito species in Europe. ECDC Technical Report, Stockholm, Sweden; 2012.
- [29]Zielke DE, Werner D, Schaffner F, Kampen H, Fonseca DM. Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One. 2014; 9:e99093.
- [30]Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhes J. The mosquitoes of Europe (CD-Rom). IRD Éditions & EID Méditerrannée, Montpellier, France; 2001.
- [31]Gutsevich A, Monchadskii A, Shtakelberg A. Fauna of the U.S.S.R. Diptera. Vol. 3, No. 4. Mosquitoes, family Culicidae. Keter Publishing House Ltd, Jerusalem, Israel; 1974.
- [32]Fonseca DM, Widdel AK, Hutchinson M, Spichiger SE, Kramer LD. Fine-scale spatial and temporal population genetics of Aedes japonicus, a new US mosquito, reveal multiple introductions. Mol Ecol. 2010; 19:1559-72.
- [33]Egizi A, Fonseca D. Ecological limits can obscure expansion history: patterns of genetic diversity in a temperate mosquito in Hawaii. Biol Invasions. 2015; 17:123-32.
- [34]Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988; 16:10881-90.
- [35]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155:945-59.
- [36]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14:2611-20.
- [37]Earl DA, Vonholdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet. 2012; 4:359-61.
- [38]Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012; 28:2537-9.
- [39]Sherwin WB. Entropy and information approaches to genetic diversity and its expression: genomic geography. Entropy. 2010; 12:1765-98.
- [40]Sherwin WB, Jabot F, Rush R, Rossetto M. Measurement of biological information with applications from genes to landscapes. Mol Ecol. 2006; 15:2857-69.
- [41]Dakin E, Avise J. Microsatellite null alleles in parentage analysis. Heredity. 2004; 93:504-9.
- [42]Magnacca KN, Brown MJ. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol Biol. 2010; 10:174. BioMed Central Full Text
- [43]Mayr E. Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press, Boston, MA, USA; 1942.
- [44]Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 2004; 431:177-81.
- [45]Damiens D, Ayrinhac A, Van Bortel W, Versteirt V, Dekoninck W, Hance T. Invasive process and repeated cross-sectional surveys of the mosquito Aedes japonicus japonicus establishment in Belgium. PLoS One. 2014; 9:e89358.
- [46]Huber K, Jansen S, Leggewie M, Badusche M, Schmidt-Chanasit J, Becker N et al.. Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol Res. 2014; 113:1-5.
- [47]Turell MJ, Sardelis MR, Dohm DJ, O'Guinn ML. Potential North American vectors of West Nile virus. Ann N Y Acad Sci. 2001; 951:317-24.
PDF