Radiation Oncology | |
Narrow safety range of intraoperative rectal irradiation exposure volume for avoiding bleeding after seed implant brachytherapy | |
Tomoaki Fujioka4  Hisanori Ariga1  Satoshi Yamaguchi3  Ikuko Uwano2  Tomonori Yabuuchi1  Susumu Tanji4  Koyo Kikuchi1  Ryuji Nakamura3  | |
[1] Department of Radiology, Iwate Medical University School of Medicine, Uchimaru 19-1, Morioka, 020-8505, Japan;Iwate Medical University Advanced Medical Research, Uchimaru 19-1, Morioka, 020-8505, Japan;Iwate Medical University PET-Liniac Advanced Medical Center, Uchimaru 19-1, Morioka, 020-8505, Japan;Department of Urology, Iwate Medical University School of Medicine, Uchimaru 19-1, Morioka, 020-8505, Japan | |
关键词: dose-volume histogram; brachytherapy; prostate cancer; | |
Others : 1160901 DOI : 10.1186/1748-717X-7-15 |
|
received in 2011-06-25, accepted in 2012-01-31, 发布年份 2012 | |
【 摘 要 】
Background & Purpose
Rectal toxicity is less common after 125I seed implant brachytherapy for prostate cancer, and intraoperative rectal dose-volume constraints (the constraint) is still undetermined in pioneering studies. As our constraint failed to prevent grade 2 or 3 rectal bleeding (bled-pts) in 5.1% of patients, we retrospectively explored another constraint for the prevention of rectal bleeding.
Materials and methods
The study population consisted of 197 patients treated with the brachytherapy as monotherapy using real-time intraoperative transrectal ultrasound (US)-guided treatment at a prescribed dose of 145 Gy. Post-implant dosimetry was performed on Day 1 and Day 30 after implantation using computed tomography (CT) imaging. Rectal bleeding toxicity was classified by CTC-AE ver. 3.0 during a mean 29-month (range, 12-48 months) period after implantation. The differences in rV100s were compared among intraoperative, Day 1 and Day 30 dosimetry, and between that of patients with grade 2 or 3 rectal bleeding (the bled-pts) and of the others (the spared-pts). All patients were divided into groups based on provisional rV100s that were increased stepwise in 0.1-cc increments from 0 to 1.0 cc. The difference in the ratios of the bled-pts to the spared-pts was tested by chi-square tests, and their odds ratios were calculated (bled-OR). All statistical analyses were performed by t-tests.
Results
The mean values of rV100us, rV100CT_1, and rV100CT_30 were 0.31 ± 0.43, 0.22 ± 0.36, and 0.59 ± 0.68 cc, respectively. These values temporarily decreased (p = 0.020) on Day 1 and increased (p = 0.000) on Day 30. There was no significant difference in rV100s between the bled-pts and spared-pts at any time of dosimetry. The maximum bled-OR was identified among patients with an rV100us value above 0.1 cc (p = 0.025; OR = 7.8; 95% CI, 1.4-145.8); an rV100CT_1 value above 0.3 cc (p = 0.014; OR = 16.2; 95% CI, 3.9-110.7), and an rV100CT_30 value above 0.5 cc (p = 0.019; OR = 6.3; 95% CI, 1.5-42.3).
Conclusion
By retrospective analysis exploring rV100 as intraoperative rectal dose-volume thresholds in 125I seed implant brachytherapy for prostate cancer, it is proved that rV100 should be less than 0.1 cc for preventing rectal bleeding.
【 授权许可】
2012 Nakamura et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150411083552639.pdf | 220KB | download | |
Figure 2. | 64KB | Image | download |
Figure 1. | 30KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Pickles T, Keys M, Morris WJ: Brachytherapy or conformal external radiotherapy for prostate cancer: a single-institution matched-pair analysis. Int J Radiat Oncol Biol Phys 2010, 76:43-49.
- [2]Theodorescu D, Gillenwater JY, Koutrouvelis PG: Prostatourethral-rectal fistula after prostate brachytherapy. Cancer 2000, 89:2085-2091.
- [3]Tran A, Wallner K, Merrick G, Seeberger J, Armstrong J, Mueller A, et al.: Rectal fistulas after prostate brachytherapy. Int J Radiat Oncol Biol Phys 2005, 63:150-154.
- [4]Snyder KM, Stock RG, Hong SM, Lo YC, Stone NN: Defining the risk of developing grade 2 proctitis following 125I prostate brachytherapy using a rectal dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 2001, 50:335-341.
- [5]Waterman FM, Dicker AP: Probability of late rectal morbidity in 125I prostate brachytherapy. Int J Radiat Oncol Biol Phys 2003, 55:342-353.
- [6]Ohashi T, Yorozu A, Toya K, Saito S, Momma T, Nagata H, et al.: Comparison of intraoperative ultrasound with postimplant computed tomography--dosimetric values at Day 1 and Day 30 after prostate brachytherapy. Brachytherapy 2007, 6:246-253.
- [7]Ishiyama H, Nakamura R, Sato T, Tanji S, Uemae M, Baba S, et al.: Difference between intraoperative ultrasound-based dosimetry and postoperative computed tomography-based dosimetry for permanent interstitial prostate brachytherapy. Brachytherapy 2009, 9:219-223.
- [8]Taussky D, Yeung I, Williams T, Pearson S, McLean M, Pond G, et al.: Rectal-wall dose dependence on postplan timing after permanent-seed prostate brachytherapy. Int J Radiat Oncol Biol Phys 2006, 65:358-363.
- [9]Raben A, Rusthoven KE, Sarkar A, Glick A, Benge B, Jacobs D, et al.: Favorable toxicity and biochemical control using real-time inverse optimization technique for prostate brachytherapy. Brachytherapy 2009, 8:297-303.
- [10]Nakamura R, Ishiyama H, Tanji S, Satoh T, Oikawa H, Inatsu W, et al.: Effects of ellipsoid prostate deformation on dose delivery during permanent interstitial brachytherapy. Brachytherapy 2010, 10:208-213.
- [11]Rivard MJ, Coursey BM, Deward LA, Hanson WF, Huq MS, Ibbott GS, et al.: Update of AAPM Task Group No. 43 report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys 2004, 31:633-674.
- [12]National Cancer Institute Cancer Therapy Evaluation Program: Common Terminology Criteria for Adverse Events version 3.0. NCI CTEP. [http://ctep.info.nih.gov] webcite
- [13]American Society for Therapeutic Radiology and Oncology Consensus Panel: Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys 1997, 37:1035-41.
- [14]Waterman FM, Dicker AP: Effect of post-implant edema on the rectal dose in prostate brachytherapy. Int J Radiat Oncol Biol Phys 1999, 45:571-576.
- [15]Waterman FM, Yue N, Corn BW, Dicker AP: Edema associated with I-125 or Pd-103 prostate brachytherapy and its impact on post-implant dosimetry: an analysis based on serial CT acquisition. Int J Radiat Oncol Biol Phys 1998, 41:1069-1077.
- [16]Merrick GS, Butler WM, Dorsey AT, Dorsey JT: The effect of constipation on rectal dosimetry following prostate brachytherapy. Med Dosim 2000, 25:237-241.
- [17]Mueller A, Wallner K, Merrick G, Ford E, Sutliff S, Cavanagh W, Butler W: Perirectal seeds as a risk factor for prostate brachytherapy-related rectal bleeding. J Radiat Oncol Biol Phys 2004, 59:1047-1052.