Particle and Fibre Toxicology | |
TIMPs of parasitic helminths – a large-scale analysis of high-throughput sequence datasets | |
Alex Loukas1  Makedonka Mitreva2  Severine Navarro1  Darren Pickering1  Andreas Hofmann3  Cinzia Cantacessi1  | |
[1] Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia;The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA;Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia | |
关键词: Functional inferences; Protein structure; Bioinformatics; Transcriptomics; Excretory/secretory products; Parasitic helminths; Tissue inhibitors of metalloproteases; | |
Others : 1227026 DOI : 10.1186/1756-3305-6-156 |
|
received in 2013-04-05, accepted in 2013-05-28, 发布年份 2013 | |
【 摘 要 】
Background
Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases.
Methods
In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts.
Results
A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses.
Conclusions
Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases.
【 授权许可】
2013 Cantacessi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150927082410477.pdf | 1985KB | download | |
Figure 3. | 57KB | Image | download |
Figure 2. | 42KB | Image | download |
Figure 1. | 812KB | Image | download |
Figure 3. | 57KB | Image | download |
Figure 2. | 42KB | Image | download |
Figure 1. | 812KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al.: Helminth infections: the great neglected tropical diseases. J Clin Invest 2008, 118:1311-1321.
- [2]Lustigman S, Prichard RK, Gazzinelli A, Grant WN, Boatin BA, et al.: A research agenda for helminth diseases of humans: the problem of helminthiasis. PLoS Negl Trop Dis 2012, 6:e1582.
- [3]Rollinson D: A wake up call for urinary schistosomiasis: reconciling research effort with public health importance. Parasitology 2009, 136:1593-1610.
- [4]Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, et al.: Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 2010, 101:579-585.
- [5]Fried B, Reddy A, Mayer D: Helminths in human carcinogenesis. Cancer Lett 2011, 305:239-249.
- [6]Keiser J, Utzinger J: The drugs we have and the drugs we need against major helminth infections. Adv Parasitol 2010, 73:197-230.
- [7]Caffrey CR, Secor WE: Schistosomiasis: from drug deployment to drug development. Curr Opin Infect Dis 2011, 24:410-417.
- [8]Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC: Drug resistance in veterinary helminths. Trends Parasitol 2004, 20:469-476.
- [9]Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, et al.: Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology 2011, 138:160-174.
- [10]Hoste H, Torres-Acosta JF: Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol 2011, 180:144-154.
- [11]De Clercq D, Sacko M, Behnke J, Gilbert F, Dorny P, et al.: Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am J Trop Med Hyg 1997, 57:25-30.
- [12]Reynoldson JA, Behnke JM, Pallant LJ, Macnish MG, Gilbert F, et al.: Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of north west Australia. Acta Trop 1997, 68:301-312.
- [13]Sacko M, De Clercq D, Behnke JM, Gilbert FS, Dorny P, et al.: Comparison of the efficacy of mebendazole, albendazole and pyrantel in treatment of human hookworm infections in the southern region of Mali, West Africa. Trans R Soc Trop Med Hyg 1999, 93:195-203.
- [14]Albonico M, Engels D, Savioli L: Monitoring drug efficacy and early detection of drug resistance in human soil-trasmitted nematodes: a pressing public health agenda for helminth control. Int J Parasitol 2004, 34:1205-1210.
- [15]Kotze AC, Kopp SR: The potential impact of density dependent fecundity on the use of the faecal egg count reduction test for detecting drug resistance in human hookworms. PLoS Negl Trop Dis 2008, 2:e297.
- [16]Gilleard JS, Beech RN: Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology 2007, 134:1133-1147.
- [17]Kotze AC: Target-based and whole-worm screening approaches to anthelmitic discovery. Vet Parasitol 2012, 186:118-123.
- [18]Knox DP: Proteinase inhibitors and helminth parasite infection. Parasite Immunol 2007, 29:57-71.
- [19]Klotz C, Ziegler T, Danilowicz-Luebert E, Hartmann S: Cystatins of parasitic organisms. Adv Exp Med Biol 2011, 712:208-221.
- [20]Cappello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ: Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human anticoagulant factor Xa. Proc Natl Acad Sci USA 1995, 92:6152-6156.
- [21]Molehin AJ, Gobert GN, McManus DP: Serine protease inhibitors of parasitic helminths. Parasitology 2012, 139:681-695.
- [22]Hartmann S, Lucius R: Modulation of host immune responses by nematode cystatins. Int J Parasitol 2003, 33:1291-1302.
- [23]Brew K, Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 2010, 1803:55-71.
- [24]Bányai L, Patthy L: The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases. Protein Sci 1999, 8:1636-1642.
- [25]Zhan B, Badamchian M, Meihua B, Ashcom J, Feng J, et al.: Molecular cloning and purification of Ac-TMP, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworm. Am J Trop Med Hyg 2002, 66:238-244.
- [26]Zhan B, Gupta R, Wong SPY, Bier S, Jiang D, et al.: Molecular cloning and characterization of Ac-TMP-2, a tissue inhibitor of metalloproteinase secreted by adult Ancylostoma caninum. Mol Biochem Parasitol 2008, 162:142-148.
- [27]Mulvenna J, Hamilton B, Nagaraj SH, Smyth D, Loukas A, et al.: Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum. Mol Cell Proteomics 2009, 8:109-121.
- [28]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
- [29]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456:53-59.
- [30]Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, et al.: Single-molecule DNA sequencing of a viral genome. Science 2008, 320:106-109.
- [31]Cantacessi C, Campbell BE, Gasser RB: Key strongylid nematodes of animals – impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012, 30:469-488.
- [32]Cantacessi C, Mitreva M, Jex AR, Young ND, Campbell BE, et al.: Massively parallel sequencing and analysis of the Necator americanus transcriptome. PLoS Negl Trop Dis 2010, 4:e684.
- [33]Cantacessi C, Young ND, Nesjum P, Jex AR, Campbell BE, et al.: The transcriptome of Trichuris suis – first molecular insights into a parasite with curative properties for key immune diseases of humans. PLoS One 2011, 6:e23590.
- [34]Jex AR, Liu S, Li B, Young ND, Hall RS, et al.: Ascaris suum draft genome. Nature 2011, 479:529-533.
- [35]Mitreva M, Jasmer JP, Zarlenga DS, Wang Z, Abubucker S, et al.: The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 2011, 43:228-235.
- [36]Tang Y, Gao X, Rosa B, Abubucker S, Hallsworth-Pepin K, et al.: Genome of the human hookworm Necator americanus . 2013. submitted for publication
- [37]Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al.: The genome of the blood fluke Schistosoma mansoni. Nature 2009, 460:352-358.
- [38]The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium: The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009, 460:345-351.
- [39]Young ND, Campbell BE, Hall RS, Jex AR, Cantacessi C, et al.: Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Negl Trop Dis 2010, 4:e719.
- [40]Young ND, Jex AR, Li B, Liu S, Yang L, et al.: Whole genome sequence of Schistosoma haematobium. Nat Genet 2012, 44:221-225.
- [41]Wang X, Chen W, Huang Y, Sun J, Men J, et al.: The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 2011, 12:R107.
- [42]Cantacessi C, Jex AR, Hall RS, Young ND, Campbell BE, et al.: A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 2010, 38:e171.
- [43]Young ND, Hall RS, Jex AR, Cantacessi C, Gasser RB: Elucidating the transcriptome of Fasciola hepatica – a key to fundamental and biotechnological discoveries for a neglected parasite. Biotechnol Adv 2010, 28:222-231.
- [44]Young ND, Jex AR, Cantacessi C, Hall RS, Campbell BE, et al.: A portrait of the transcriptome of the neglected trematode, Fasciola gigantica – biological and biotechnological implications. PLoS Negl Trop Dis 2011, 5:e1004.
- [45]Flicek P, Ridwan Amode M, Barrell D, Beal K, Brent S, et al.: Ensembl 2012. Nucleic Acids Res 2012, 40:D84-D90.
- [46]Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al.: Draft genome of the filarial nematode parasite Brugia malayi. Science 2007, 317:1756-1760.
- [47]Mangiola S, Young ND, Korhonen P, Mondal A, Scheerlinck JP, et al.: Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology. Biotechnol Adv 2013. in press
- [48]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. J Mol Biol 1990, 215:403-410.
- [49]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
- [50]Docherty AJ, Lyons A, Smith BJ, Wright EM, Stephens PE, et al.: Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 1985, 318:66-69.
- [51]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
- [52]Chen Y, Zhang Y, Yin Y, Gao G, Li S, et al.: SPD—a web based secreted protein database. Nucleic Acids Res 2005, 33:D169-D173.
- [53]Choo KH, Tan TW, Ranganathan S: SPdb – a signal peptide database. BMC Bioinformatics 2005, 6:249.
- [54]Wang CK, Broder U, Weeratunga SK, Gasser RB, Loukas A, et al.: SBAL: a practical tool to generate and edit structure-based amino acid sequence alignments. Bioinformatics 2012, 28:1026-1027.
- [55]McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16:404-405.
- [56]Ronquist F, Huelsenbeck J: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
- [57]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al.: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distances, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
- [58]Lobley A, Sadowski MI, Jones DT: pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 2009, 25:1761-1767.
- [59]Sali A, Blundell T: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234:779-815.
- [60]Laskowski R, MacArthur M, Moss D, Thornton J: PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26:283-291.
- [61]DeLano W: The PyMOL Molecular Graphics System. 2002. http://www.pymol.org/ webcite
- [62]Li R, Yu C, Li Y, Lam TW, Yiu SM, et al.: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967.
- [63]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 6:S22-S32.
- [64]Kucera K, Harrison LM, Cappello M, Modis Y: Ancylostoma ceylanicum excretory-secretory protein 2 adopts a netrin-like fold and defines a novel family of nematode proteins. J Mol Biol 2011, 408:9-17.
- [65]Bungiro RD Jr, Cappello M: Detection of excretory/secretory coproantigens in experimental hookworm infection. Am J Trop Med Hyg 2005, 73:915-920.
- [66]Bungiro RD Jr, Solis CV, Harrison LM, Cappello M: Purification and molecular cloning of and immunization with Ancylostoma ceylanicum excretory-secretory protein 2, an immunoreactive protein produced by adult hookworms. Infect Immun 2004, 72:2203-2213.
- [67]Alper S, Laws R, Lackford B, Boyd WA, Dunlap P, et al.: Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci USA 2008, 105:7016-7021.
- [68]Ding C, Cicuttini F, Li J, Jones G: Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opin Investig Drugs 2009, 18:1457-1466.
- [69]Cuellar C, Wu W, Mendez S: The hookworm tissue inhibitor of metalloproteases (Ac-TMP-1) modifies dendritic cell function and induces generation of CD4 and CD8 suppressor T cells. PLoS Negl Trop Dis 2009, 3:e439.
- [70]Guyot R, Magre S, Leduque P, Le Magueresse-Battistoni B: Differential expression of tissue inhibitor of metalloproteinases type 1 (TIMP-1) during mouse gonad development. Dev Dyn 2003, 227:357-366.
- [71]Jaworski DM, Beem-Miller M, Lluri G, Barrantes-Reynolds R: Potential regulatory relationship between the nested gene DDC8 and its host gene tissue inhibitor of metalloproteinase-2. Physiol Genomics 2007, 28:168-178.
- [72]Sharpe RM: Regulation of spermatogenesis. In The physiology of reproduction. Edited by Knobil E, Neill JD. New York: Raven Press; 1994:1363-1434.
- [73]Robinson LL, Sznajder NA, Riley SC, Anderson RA: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human fetal testis and ovary. Mol Hum Reprod 2001, 7:641-648.
- [74]Grima J, Calcagno K, Cheng CY: Purification, cDNA cloning, and developmental changes in the steady-state mRNA level of rat testicular tissue inhibitor of metalloproteases-2 (TIMP-2). J Androl 1996, 17:263-275.
- [75]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
- [76]Islam MK, Miyoshi T, Yamada M, Tsuij N: Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm’s molting and development. Infect Immun 2005, 73:1995-2004.
- [77]Rinaldi G, Okatcha TI, Popratiloff A, Ayuk MA, Suttiprapa S, et al.: Genetic manipulation of Schistosoma haematobium, the neglected schistosome. PLoS Negl Trop Dis 2011, 5:e1348.
- [78]Rinaldi G, Eckert SE, Tsai IJ, Suttiprapa S, Kines KJ, et al.: Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus. PLoS Pathog 2012, 8:e1002810.
- [79]Brew K, Dinakarpandian D, Nagase H: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, Prot Struct Mol Enzymol 2000, 1477:267-283.
- [80]Murphy G, Houbrechts A, Cockett MI, Williamson RA, O’Shea M, et al.: The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry 1991, 30:8097-8102.
- [81]Langton KP, Barker MD, McKie N: Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem 1998, 273:16778-16781.
- [82]De Clerck YA, Yean TD, Lee Y, Tomich JM, Langley KE: Characterization of the functional domain of tissue inhibitor of metalloproteinase-2 (TIMP-2). Biochem J 1993, 289:65-69.
- [83]Willenbrock F, Crabbe T, Slocombe PM, Sutton CW, Docherty AJP, et al.: The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry 1993, 32:4330-4337.
- [84]Ko YC, Langley KE, Mendiaz EA, Parker VP, Taylor SM, et al.: The C-terminal domain of tissue inhibitor of metalloproteinase-2 is required for cell binding but not for antimetalloproteinase activity. Biochem Biophys Res Commun 1997, 236:100-105.
- [85]Meng Q, Malinovskii V, Huang W, Hu YJ, Chung L, et al.: Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. J Biol Chem 1999, 274:10184-10189.
- [86]Huang W, Suzuki K, Nagase H, Arumugam S, Van Doren SR, et al.: Folding and characterisation of the amino-terminal domain of human tissue inhibitor of metalloproteinases-1 (TIMP-1) expressed at high yield in E. coli. FEBS Lett 1996, 384:155-161.
- [87]Amour A, Slocombe PM, Webster A, Butler M, Knight CG, et al.: TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 1998, 435:39-44.
- [88]Kashiwagi M, Tortorella M, Nagase H, Brew K: TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 2001, 276:12501-12504.
- [89]Olson MW, Gervasi DC, Mobahsery S, Fridman R: Kinetic analysis of the binding of human matrix metalloproteinse-2 and −9 to tissue inhibitor of matrix metalloproteinase (TIMP-1 and TIMP-2). J Biol Chem 1997, 272:29975-29983.
- [90]Hutton M, Willenbrock F, Brocklehurst K, Murphy G: Kinetic analysis of the mechanism of interaction of full-length TIMP-2 and gelatinase A – evidence for the existence of a low affinity intermediate. Biochemistry 1998, 37:10094-10098.
- [91]Lee MH, Atkinson S, Murphy G: Identification of the Extracellular Matrix (ECM) Binding Motifs of Tissue Inhibitor of Metalloproteinases (TIMP)-3 and Effective Transfer to TIMP-1. J Biol Chem 2007, 282:6887-6898.
- [92]Webster JP, Oliviera G, Rollinson D, Gower CM: Schistosome genomes: a wealth of information. Trends Parasitol 2010, 26:103-106.
- [93]Loukas A, Gaze S, Mulvenna JP, Gasser RB, Brindley PJ, et al.: Vaccinomics for the major blood feeding helminths of humans. OMICS 2011, 15:567-577.
- [94]Hagen J, Lee EF, Fairlie WD, Kalinna BH: Functional genomics approaches in parasitic helminths. Parasite Immunol 2012, 34:163-182.
- [95]Kumar S, Koutsovoulos G, Kaur G, Blaxter M: Toward 959 nematode genomes. Worm 2012, 1:1-9.
- [96]Kalinna BH, Brindley PJ: Manipulating the manipulators: advances in parasitic helminth transgenesis and RNAi. Trends Parasitol 2007, 23:197-204.
- [97]Selkirk ME, Huang SC, Knox DP, Britton C: The development of RNA interference (RNAi) in gastrointestinal nematodes. Parasitology 2012, 139:605-612.