期刊论文详细信息
Molecular Neurodegeneration
Dysregulation of protein trafficking in neurodegeneration
Huaxi Xu1  Guojun Bu2  Timothy Huang1  Xin Wang1 
[1] Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA;Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China
关键词: Endocytic trafficking;    Parkinson’s disease;    Down syndrome;    Alzheimer’s disease;    Ras-related GTP-binding protein;    The retromer complex;    Sorting nexin;    γ-secretase;    β-secretase;    β-amyloid precursor protein;   
Others  :  1138751
DOI  :  10.1186/1750-1326-9-31
 received in 2014-07-29, accepted in 2014-08-14,  发布年份 2014
PDF
【 摘 要 】

Intracellular protein trafficking plays an important role in neuronal function and survival. Protein misfolding is a common theme found in many neurodegenerative diseases, and intracellular trafficking machinery contributes to the pathological accumulation and clearance of misfolded proteins. Although neurodegenerative diseases exhibit distinct pathological features, abnormal endocytic trafficking is apparent in several neurodegenerative diseases, such as Alzheimer’s disease (AD), Down syndrome (DS) and Parkinson’s disease (PD). In this review, we will focus on protein sorting defects in three major neurodegenerative diseases, including AD, DS and PD. An important pathological feature of AD is the presence of extracellular senile plaques in the brain. Senile plaques are composed of β-amyloid (Aβ) peptide aggregates. Multiple lines of evidence demonstrate that over-production/aggregation of Aβ in the brain is a primary cause of AD and attenuation of Aβ generation has become a topic of extreme interest in AD research. Aβ is generated from β-amyloid precursor protein (APP) through sequential cleavage by β-secretase and the γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble APPα which precludes Aβ generation. DS patients display a strikingly similar pathology to AD patients, including the generation of neuronal amyloid plaques. Moreover, all DS patients develop an AD-like neuropathology by their 40 s. Therefore, understanding the metabolism/processing of APP and how these underlying mechanisms may be pathologically compromised is crucial for future AD and DS therapeutic strategies. Evidence accumulated thus far reveals that synaptic vesicle regulation, endocytic trafficking, and lysosome-mediated autophagy are involved in increased susceptibility to PD. Here we review current knowledge of endosomal trafficking regulation in AD, DS and PD.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150320092031721.pdf 385KB PDF download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349(6311):704-706.
  • [2]Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995, 269(5226):973-977.
  • [3]Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375(6534):754-760.
  • [4]Zhang YW, Thompson R, Zhang H, Xu H: APP processing in Alzheimer’s disease. Molecular brain 2011, 4:3.
  • [5]Gendron TF, Petrucelli L: The role of tau in neurodegeneration. Mol Neurodegener 2009, 4:13.
  • [6]Selkoe DJ: The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 1998, 8(11):447-453.
  • [7]Evin G, Weidemann A: Biogenesis and metabolism of Alzheimer’s disease Abeta amyloid peptides. Peptides 2002, 23(7):1285-1297.
  • [8]Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, Li R, Shen Y: Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 2003, 9(1):3-4.
  • [9]Spoelgen R, von Arnim CA, Thomas AV, Peltan ID, Koker M, Deng A, Irizarry MC, Andersen OM, Willnow TE, Hyman BT: Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 2006, 26(2):418-428.
  • [10]He X, Chang WP, Koelsch G, Tang J: Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 2002, 524(1–3):183-187.
  • [11]Santosa C, Rasche S, Barakat A, Bellingham SA, Ho M, Tan J, Hill AF, Masters CL, McLean C, Evin G: Decreased expression of GGA3 protein in Alzheimer’s disease frontal cortex and increased co-distribution of BACE with the amyloid precursor protein. Neurobiol Dis 2011, 43(1):176-183.
  • [12]Finan GM, Okada H, Kim TW: BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin. J Biol Chem 2011, 286(14):12602-12616.
  • [13]Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, Hiltunen M, Yang SH, Zhong Z, Shen Y, Simpkins JW, Tanzi RE: Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 2007, 54(5):721-737.
  • [14]Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M: Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286(5440):735-741.
  • [15]Hook VY, Toneff T, Aaron W, Yasothornsrikul S, Bundey R, Reisine T: Beta-amyloid peptide in regulated secretory vesicles of chromaffin cells: evidence for multiple cysteine proteolytic activities in distinct pathways for beta-secretase activity in chromaffin vesicles. J Neurochem 2002, 81(2):237-256.
  • [16]Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW: Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease beta-secretase. J Biol Chem 2000, 275(43):33729-33737.
  • [17]Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ: Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 2011, 43(2):338-345.
  • [18]Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC: VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 2011, 195(5):765-779.
  • [19]Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA: Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci U S A 2008, 105(20):7327-7332.
  • [20]Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH: The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 2002, 21(21):5691-5700.
  • [21]Trommsdorff M, Borg JP, Margolis B, Herz J: Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 1998, 273(50):33556-33560.
  • [22]Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE, Hyman BT, Strickland DK: LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 1995, 82(2):331-340.
  • [23]Dierssen M: Down syndrome: the brain in trisomic mode. Nat Rev Neurosci 2012, 13(12):844-858.
  • [24]Haydar TF, Reeves RH: Trisomy 21 and early brain development. Trends Neurosci 2012, 35(2):81-91.
  • [25]Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, Mullaney K, Neve RL, Gruenberg J, Nixon RA: Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. Am J Pathol 2008, 173(2):370-384.
  • [26]Cataldo AM, Petanceska S, Peterhoff CM, Terio NB, Epstein CJ, Villar A, Carlson EJ, Staufenbiel M, Nixon RA: App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of down syndrome. J Neurosci 2003, 23(17):6788-6792.
  • [27]Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Grattau Y, Olivomarin JC, de Chaumont F, Lecourtois M, Antonarakis SE, Veltman JA, Delabar JM, Duyckaerts C, Di Paolo G, Potier MC: Trisomy for synaptojanin1 in down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 2012, 21(14):3156-3172.
  • [28]Dauer W, Przedborski S: Parkinson’s disease: mechanisms and models. Neuron 2003, 39(6):889-909.
  • [29]Trinh J, Farrer M: Advances in the genetics of Parkinson disease. Nat Rev Neurol 2013, 9(8):445-454.
  • [30]Abeliovich A, Flint Beal M: Parkinsonism genes: culprits and clues. J Neurochem 2006, 99(4):1062-1072.
  • [31]Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A: Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 2006, 60(4):389-398.
  • [32]Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S: Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci U S A 1997, 94(8):3748-3752.
  • [33]Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H: Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A 1999, 96(2):742-747.
  • [34]Sisodia SS: Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 1992, 89(13):6075-6079.
  • [35]Caporaso GL, Takei K, Gandy SE, Matteoli M, Mundigl O, Greengard P, De Camilli P: Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci 1994, 14(5 Pt 2):3122-3138.
  • [36]Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ: beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 1993, 268(5):3021-3024.
  • [37]Haass C, Hung AY, Schlossmacher MG, Oltersdorf T, Teplow DB, Selkoe DJ: Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann N Y Acad Sci 1993, 695:109-116.
  • [38]MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A: The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 2006, 52(4):587-593.
  • [39]Heo HY, Kim KS, Seol W: Coordinate Regulation of Neurite Outgrowth by LRRK2 and Its Interactor, Rab5. Experiment Neurobiol 2010, 19(2):97-105.
  • [40]Dodson MW, Zhang T, Jiang C, Chen S, Guo M: Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet 2012, 21(6):1350-1363.
  • [41]Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ: GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet 2012, 8(2):e1002526.
  • [42]Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A: Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000, 25(1):239-252.
  • [43]Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S: Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 2006, 313(5785):324-328.
  • [44]Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC: Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 2010, 21(11):1850-1863.
  • [45]Seaman MN: Recycle your receptors with retromer. Trends Cell Biol 2005, 15(2):68-75.
  • [46]Seaman MN: Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 2004, 165(1):111-122.
  • [47]Seaman MN: Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 2007, 120(Pt 14):2378-2389.
  • [48]Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X: The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 2008, 14(1):120-131.
  • [49]Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC: Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 2008, 14(1):140-147.
  • [50]Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G: C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 2008, 14(1):132-139.
  • [51]Kim E, Lee Y, Lee HJ, Kim JS, Song BS, Huh JW, Lee SR, Kim SU, Kim SH, Hong Y, Shim I, Chang KT: Implication of mouse Vps26b-Vps29-Vps35 retromer complex in sortilin trafficking. Biochem Biophys Res Commun 2010, 403(2):167-171.
  • [52]Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW: Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 2005, 58(6):909-919.
  • [53]Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA: Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol 2014, 10(6):443-449.
  • [54]Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, et al.: A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011, 89(1):168-175.
  • [55]Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, et al.: VPS35 mutations in Parkinson disease. Am J Hum Genet 2011, 89(1):162-167.
  • [56]Ando M, Funayama M, Li Y, Kashihara K, Murakami Y, Ishizu N, Toyoda C, Noguchi K, Hashimoto T, Nakano N, Sasaki R, Kokubo Y, Kuzuhara S, Ogaki K, Yamashita C, Yoshino H, Hatano T, Tomiyama H, Hattori N: VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord 2012, 27(11):1413-1417.
  • [57]Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD: The Vps35 D620N mutation linked to Parkinson’s disease disrupts the cargo sorting function of retromer. Traffic 2014, 15(2):230-244.
  • [58]Sevlever D, Jiang P, Yen SH: Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008, 47(36):9678-9687.
  • [59]Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H, Levey AI, Lah JJ: Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 2004, 61(8):1200-1205.
  • [60]Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, et al.: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007, 39(2):168-177.
  • [61]Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE: Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2005, 102(38):13461-13466.
  • [62]Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR, Willnow TE, Christensen EI, Mobley WB, Nykjær A, Andersen OM: Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 2012, 32(4):1467-1480.
  • [63]Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Fuchtbauer EM, Fuchtbauer A, Holtzman DM, Takagi J, Willnow TE: Lysosomal sorting of amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 2014, 6(223):223. ra220
  • [64]Bonifacino JS: The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 2004, 5(1):23-32.
  • [65]He X, Li F, Chang WP, Tang J: GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 2005, 280(12):11696-11703.
  • [66]Wahle T, Thal DR, Sastre M, Rentmeister A, Bogdanovic N, Famulok M, Heneka MT, Walter J: GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J Neurosci 2006, 26(49):12838-12846.
  • [67]Wahle T, Prager K, Raffler N, Haass C, Famulok M, Walter J: GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 2005, 29(3):453-461.
  • [68]Herskowitz JH, Offe K, Deshpande A, Kahn RA, Levey AI, Lah JJ: GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-beta production. Mol Biol Cell 2012, 23(14):2645-2657.
  • [69]Haass C, Kaether C, Thinakaran G, Sisodia S: Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012, 2(5):a006270.
  • [70]Natunen T, Parrado AR, Helisalmi S, Pursiheimo JP, Sarajarvi T, Makinen P, Kurkinen KM, Mullin K, Alafuzoff I, Haapasalo A, Bertram L, Soininen H, Tanzi RE, Hiltunen M: Elucidation of the BACE1 regulating factor GGA3 in Alzheimer’s disease. J Alzheimers Dis 2013, 37(1):217-232.
  • [71]Kang EL, Biscaro B, Piazza F, Tesco G: BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus. J Biol Chem 2012, 287(51):42867-42880.
  • [72]Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, Schiavo G, Annaert W: ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 2011, 108(34):E559-E568.
  • [73]Cullen PJ: Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008, 9(7):574-582.
  • [74]Lee J, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, van Kerkhof P, Marzolo MP, Bu G: Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 2008, 283(17):11501-11508.
  • [75]van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous GJ, Klumperman J, Bu G: Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 2005, 24(16):2851-2861.
  • [76]Schobel S, Neumann S, Hertweck M, Dislich B, Kuhn PH, Kremmer E, Seed B, Baumeister R, Haass C, Lichtenthaler SF: A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein. J Biol Chem 2008, 283(21):14257-14268.
  • [77]Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim TW: Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 2010, 24(8):2783-2794.
  • [78]Mizutani R, Nakamura K, Kato N, Aizawa K, Miyamoto Y, Torii T, Yamauchi J, Tanoue A: Expression of sorting nexin 12 is regulated in developing cerebral cortical neurons. J Neurosci Res 2012, 90(4):721-731.
  • [79]Zhao Y, Wang Y, Yang J, Wang X, Zhao Y, Zhang X, Zhang YW: Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener 2012, 7:30.
  • [80]Cai L, Loo LS, Atlashkin V, Hanson BJ, Hong W: Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol Cell Biol 2011, 31(8):1734-1747.
  • [81]Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, Chen Y, Johnson PF, Wu C, Bu G, Mobley WC, Zhang D, Gage FH, Ranscht B, Zhang YW, Lipton SA, Hong W, Xu H: Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat Med 2013, 19(4):473-480.
  • [82]Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W: A role for sorting nexin 27 in AMPA receptor trafficking. Nat Commun 2014, 5:3176.
  • [83]Okamoto M, Sudhof TC: Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J Biol Chem 1997, 272(50):31459-31464.
  • [84]Okamoto M, Sudhof TC: Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. Eur J Cell Biol 1998, 77(3):161-165.
  • [85]Rogelj B, Mitchell JC, Miller CC, McLoughlin DM: The X11/Mint family of adaptor proteins. Brain Res Rev 2006, 52(2):305-315.
  • [86]Biederer T, Cao X, Sudhof TC, Liu X: Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J Neurosci 2002, 22(17):7340-7351.
  • [87]King GD, Perez RG, Steinhilb ML, Gaut JR, Turner RS: X11alpha modulates secretory and endocytic trafficking and metabolism of amyloid precursor protein: mutational analysis of the YENPTY sequence. Neuroscience 2003, 120(1):143-154.
  • [88]Borg JP, Yang Y, De Taddeo-Borg M, Margolis B, Turner RS: The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J Biol Chem 1998, 273(24):14761-14766.
  • [89]Ho A, Liu X, Sudhof TC: Deletion of Mint proteins decreases amyloid production in transgenic mouse models of Alzheimer’s disease. J Neurosci 2008, 28(53):14392-14400.
  • [90]Lau KF, McLoughlin DM, Standen C, Miller CC: X11 alpha and x11 beta interact with presenilin-1 via their PDZ domains. Mol Cell Neurosci 2000, 16(5):557-565.
  • [91]King GD, Cherian K, Turner RS: X11alpha impairs gamma- but not beta-cleavage of amyloid precursor protein. J Neurochem 2004, 88(4):971-982.
  • [92]Dugan JM, de Wit C, McConlogue L, Maltese WA: The Ras-related GTP-binding protein, Rab1B, regulates early steps in exocytic transport and processing of beta-amyloid precursor protein. J Biol Chem 1995, 270(18):10982-10989.
  • [93]Maltese WA, Wilson S, Tan Y, Suomensaari S, Sinha S, Barbour R, McConlogue L: Retention of the Alzheimer’s amyloid precursor fragment C99 in the endoplasmic reticulum prevents formation of amyloid beta-peptide. J Biol Chem 2001, 276(23):20267-20279.
  • [94]McConlogue L, Castellano F, de Wit C, Schenk D, Maltese WA: Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer’s beta-amyloid precursor protein. J Biol Chem 1996, 271(3):1343-1348.
  • [95]Buggia-Prevot V, Fernandez CG, Udayar V, Vetrivel KS, Elie A, Roseman J, Sasse VA, Lefkow M, Meckler X, Bhattacharyya S, George M, Kar S, Bindokas VP, Parent AT, Rajendran L, Band H, Vassar R, Thinakaran G: A function for EHD family proteins in unidirectional retrograde dendritic transport of BACE1 and Alzheimer’s disease Abeta production. Cell reports 2013, 5(6):1552-1563.
  • [96]Udayar V, Buggia-Prevot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, AESG Simons M, Ries J, Puthenveedu MA, Hardy J, Thinakaran G, Rajendran L: A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell reports 2013, 5(6):1536-1551.
  • [97]Buggia-Prevot V, Fernandez CG, Riordan S, Vetrivel KS, Roseman J, Waters J, Bindokas VP, Vassar R, Thinakaran G: Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase. Mol Neurodegener 2014, 9:1.
  • [98]Dumanchin C, Czech C, Campion D, Cuif MH, Poyot T, Martin C, Charbonnier F, Goud B, Pradier L, Frebourg T: Presenilins interact with Rab11, a small GTPase involved in the regulation of vesicular transport. Hum Mol Genet 1999, 8(7):1263-1269.
  • [99]Scheper W, Zwart R, Baas F: Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. Brain Res Mol Brain Res 2004, 122(1):17-23.
  • [100]Scheper W, Zwart R, Sluijs P, Annaert W, Gool WA, Baas F: Alzheimer’s presenilin 1 is a putative membrane receptor for rab GDP dissociation inhibitor. Hum Mol Genet 2000, 9(2):303-310.
  • [101]MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 2013, 77(3):425-439.
  • [102]Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ, Lee VM: Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol 2004, 165(3):335-346.
  • [103]Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W: Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 2004, 166(7):1041-1054.
  • [104]Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA: Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 2004, 63(8):821-830.
  • [105]Nixon RA: The role of autophagy in neurodegenerative disease. Nat Med 2013, 19(8):983-997.
  • [106]Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141(7):1146-1158.
  • [107]Coen K, Flannagan RS, Baron S, Carraro-Lacroix LR, Wang D, Vermeire W, Michiels C, Munck S, Baert V, Sugita S, Wuytack F, Hiesinger PR, Grinstein S, Annaert W: Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol 2012, 198(1):23-35.
  • [108]Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS: A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci 2012, 32(25):8633-8648.
  文献评价指标  
  下载次数:12次 浏览次数:19次