期刊论文详细信息
Translational Neurodegeneration
Epigenetic modifications of chronic hypoxia-mediated neurodegeneration in Alzheimer’s disease
Weidong Le2  Hui Liu1 
[1] Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China;1st Affiliated Hospital, Dalian Medical University, Dalian 116011, PR China
关键词: Histone acetylation;    DNA methylation;    Epigenetic modification;    Chronic hypoxia;    Alzheimer’s disease;   
Others  :  834666
DOI  :  10.1186/2047-9158-3-7
 received in 2013-12-07, accepted in 2014-03-11,  发布年份 2014
PDF
【 摘 要 】

Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting the elderly people. AD is characterized by progressive and gradual decline in cognitive function and memory loss. While familial early-onset AD is usually associated with gene mutations, the etiology of sporadic late-onset form of AD is largely unknown. It has been reported that environmental factors and epigenetic alterations significantly contribute to the process of AD. Our previous studies have documented that chronic hypoxia is one of the environmental factors that may trigger the AD development and aggravate the disease progression. In this review, we will summarize the pathological effects of chronic hypoxia on the onset and development of AD and put forward the possible molecule mechanisms underlying the chronic hypoxia mediated AD pathogenesis. Finally, we propose that epigenetic regulations may represent new opportunity for the therapeutic intervention of this disease.

【 授权许可】

   
2014 Liu and Le; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715083519303.pdf 452KB PDF download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Wang W, Rudan I: Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 2013, 381:2016-2023.
  • [2]Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH: Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 2010, 30:14946-14954.
  • [3]Swerdlow RH: Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2007, 2:347-359.
  • [4]Goedert M, Spillantini MG: A century of Alzheimer’s disease. Science 2006, 314:777-781.
  • [5]Bertram L, Lill CM, Tanzi RE: The genetics of Alzheimer disease: back to the future. Neuron 2010, 68:270-281.
  • [6]Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41:1088-1093.
  • [7]Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011, 43:429-435.
  • [8]Chouliaras L, Sierksma AS, Kenis G, Prickaerts J, Lemmens MA, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, Van Leeuwen F, Hof PR, Van Os J, Steinbusch HWM, Van den Hove DLA, Rutten BPF: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010., 2010doi: 10.4061/2010/859101
  • [9]Lahiri DK, Maloney B, Zawia NH: The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 2009, 14:992-1003.
  • [10]Lahiri DK, Zawia NH, Greig NH, Sambamurti K, Maloney B: Early-life events may trigger biochemical pathways for Alzheimer’s disease: the “LEARn” model. Biogerontology 2008, 9:375-379.
  • [11]Carrillo MC, Blackwell A, Hampel H, Lindborg J, Sperling R, Schenk D, Sevigny JJ, Ferris S, Bennett DA, Craft S, Timothy H, Klunk W: Early risk assessment for Alzheimer’s disease. Alzheimers Dement 2009, 5:182-196.
  • [12]Fleminger S, Oliver D, Lovestone S, Rabe-Hesketh S, Giora A: Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003, 74:857-862.
  • [13]Sivanandam TM, Thakur MK: Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012, 36:1376-1381.
  • [14]Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA: Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002, 346:476-483.
  • [15]Zhang X, Le W: Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol 2010, 223:299-303.
  • [16]Michiels C: Physiological and pathological responses to hypoxia. Am J Pathol 2004, 164:1875-1882.
  • [17]Ivan CS, Seshadri S, Beiser A, Au R, Kase CS, Kelly-Hayes M, Wolf PA: Dementia after stroke the Framingham study. Stroke 2004, 35:1264-1268.
  • [18]Savva GM, Stephan BC: Epidemiological studies of the effect of stroke on incident dementia a systematic review. Stroke 2010, 41:e41-e46.
  • [19]Ukraintseva S, Sloan F, Arbeev K, Yashin A: Increasing rates of dementia at time of declining mortality from stroke. Stroke 2006, 37:1155-1159.
  • [20]Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI: Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994, 57:419-425.
  • [21]Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, Ferrell E, Fournier DR, Kan CW, Campbell TG: Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One 2011, 6:e28263.
  • [22]Kristine Yaffe AML, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL: Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011, 306:613-619.
  • [23]Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L, Metti AL, Patel KV, Yaffe K: Anemia and risk of dementia in older adults: findings from the Health ABC study. Neurology 2013, 81:528-533.
  • [24]Li J, Dong Z, Liu B, Zhuo Y, Sun X, Yang Z, Ge J, Tan Z: Hypoxia induces beta-amyloid in association with death of RGC-5 cells in culture. Biochem Biophys Res Commun 2011, 410:40-44.
  • [25]Li L, Zhang X, Yang D, Luo G, Chen S, Le W: Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 2009, 30:1091-1098.
  • [26]Zhang X, Li L, Zhang X, Xie W, Li L, Yang D, Heng X, Du Y, Doody RS, Le W: Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer’s disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 2013, 34:663-678.
  • [27]Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY: Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 2013, 19:820-833.
  • [28]Pearson HA, Peers C: Physiological roles for amyloid beta peptides. J Physiol 2006, 575:5-10.
  • [29]Malito E, Hulse RE, Tang W-J: Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008, 65:2574-2585.
  • [30]Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W: Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 2006, 103:18727-18732.
  • [31]Wang R, Zhang YW, Zhang X, Liu R, Zhang X, Hong S, Xia K, Xia J, Zhang Z, Xu H: Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J 2006, 20:1275-1277.
  • [32]Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, Le W: Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 2011, 6:e19229.
  • [33]Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW: Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007, 282:10873-10880.
  • [34]Marshall AJ, Rattray M, Vaughan PF: Chronic hypoxia in the human neuroblastoma SH-SY5Y causes reduced expression of the putative α-secretases, ADAM10 and TACE, without altering their mRNA levels. Brain Res 2006, 1099:18-24.
  • [35]Webster NJ, Green KN, Peers C, Vaughan PF: Altered processing of amyloid precursor protein in the human neuroblastoma SH SY5Y by chronic hypoxia. J Neurochem 2002, 83:1262-1271.
  • [36]Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 1998, 12:149-162.
  • [37]Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM: Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 2007, 171:241-251.
  • [38]Apelt J, Ach K, Schliebs R: Aging-related down-regulation of neprilysin, a putative β-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of β-amyloid plaques. Neurosci Lett 2003, 339:183-186.
  • [39]Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM: Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 2005, 26:645-654.
  • [40]Wang D-S, Lipton RB, Katz MJ, Davies P, Buschke H, Kuslansky G, Verghese J, Younkin SG, Eckman C, Dickson DW: Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropathol Exp Neurol 2005, 64:378-385.
  • [41]Russo R, Borghi R, Markesbery W, Tabaton M, Piccini A: Neprylisin decreases uniformly in Alzheimer’s disease and in normal aging. FEBS Lett 2005, 579:6027-6030.
  • [42]Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M: Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002, 61:849-856.
  • [43]Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ: Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 2007, 32:1741-1748.
  • [44]Nalivaevaa NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, Dobrota D, Turner AJ: Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid degrading enzymes. Ann N Y Acad Sci 2004, 1035:21-33.
  • [45]Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33:245-254.
  • [46]Rodenhiser D, Mann M: Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 2006, 174:341-348.
  • [47]Wang S-C, Oelze B, Schumacher A: Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3:e2698.
  • [48]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13:484-492.
  • [49]Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S: S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005, 28:195-204.
  • [50]Roger L, West JML, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 1995, 6:141-146.
  • [51]Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD: Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 2009, 4:e6617.
  • [52]Shahrzad S, Bertrand K, Minhas K, Coomber B: Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007, 2:119-125.
  • [53]Hartley I, Elkhoury FF, Shin JH, Xie B, Gu X, Gao Y, Zhou D, Haddad GG: Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013, 8:e77859.
  • [54]Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J: The epigenetic effects of amyloid-β < sub > 1–40 on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009, 378:57-61.
  • [55]Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ: Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 2008, 10:94-100.
  • [56]Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9:702-716.
  • [57]Lee JH: Mini review: epigenetic modification is linked to alzheimers disease: is it a maker or a marker? BMB Rep 2010, 43:649-655.
  • [58]Adwan L, Zawia NH: Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 2013, 139(1):41-50.
  • [59]Caraci F, Leggio GM, Drago F, Salomone S: Epigenetic drugs for Alzheimer’s disease: hopes and challenges. Br J Clin Pharmacol 2012, 75:1154-1155.
  • [60]Wang J, Yu J-T, Tan M-S, Jiang T, Tan L: Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev 2013, 12(4):1024-41.
  • [61]Cuadrado-Tejedor M, Oyarzabal J, Lucas MP, Franco R, García-Osta A: Epigenetic drugs in Alzheimer’s disease. Biomolecular Concepts 2013, 4:433-445.
  • [62]Peedicayil J: Epigenetic drugs for Alzheimer’s disease. Br J Clin Pharmacol 2012, 75:1152-1153.
  • [63]Monti B, Polazzi E, Contestabile A: Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2009, 2:95-109.
  • [64]Nalivaeva NN, Belyaev ND, Turner AJ: Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 2009, 30:509-514.
  • [65]Zhang X-Z, Li X-J, Zhang H-Y: Valproic acid as a promising agent to combat Alzheimer’s disease. Brain Res Bull 2010, 81:3-6.
  • [66]Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H: Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008, 205:2781-2789.
  • [67]Wang Z, Zhang XJ, Li T, Li J, Tang Y, Le W: Valproic acid reduces neuritic plaque formation and improves learning deficits in APPSwe/PS1A246E transgenic mice via preventing the prenatal hypoxia induced down regulation of neprilysin. CNS Neurosci Ther 2013, 20:209-217.
  • [68]Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ: Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 2012, 46:569-577.
  • [69]Daulatzai MA: Death by a thousand cuts in Alzheimer’s disease: hypoxia—the prodrome. Neurotox Res 2013, 24:216-243.
  文献评价指标  
  下载次数:21次 浏览次数:19次