Particle and Fibre Toxicology | |
Leishmania enriettii: biochemical characterisation of lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) and infectivity to Cavia porcellus | |
Rodrigo Pedro Pinto Soares5  Nelder de Figueiredo Gontijo2  Maria Norma Melo3  Patrícia Martins Parreiras4  Marco Antônio Campos4  Natalia Lima Pessoa4  Olindo Assis Martins-Filho4  Amanda Cardoso de Oliveira Silveira4  João Henrique Campos1  Ana Claúdia Torrecilhas1  Paula Monalisa Nogueira5  Rafael Ramiro de Assis4  Larissa Ferreira Paranaíba2  | |
[1] Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Biológicas, Campus Diadema, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil;Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil;Laboratório de Biologia de Leishmania, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil;Laboratory of Cellular and Molecular Parasitology, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Av. Augusto de Lima 1715, Belo Horizonte 30190-002, Minas Gerais, Brazil | |
关键词: Innate immunity; Macrophage; Cavia porcellus; Glycoinositolphospholipids; Lipophosphoglycan; Glycoconjugates; Leishmania enriettii; | |
Others : 1147784 DOI : 10.1186/s13071-015-0633-8 |
|
received in 2014-08-23, accepted in 2015-01-01, 发布年份 2015 | |
【 摘 要 】
Background
Leishmania enriettii is a species non-infectious to man, whose reservoir is the guinea pig Cavia porcellus. Many aspects of the parasite-host interaction in this model are unknown, especially those involving parasite surface molecules. While lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) of Leishmania species from the Old and New World have already been described, glycoconjugates of L. enriettii and their importance are still unknown.
Methods
Mice peritoneal macrophages from C57BL/6 and knock-out (TLR2 −/−, TLR4 −/−) were primed with IFN-γ and stimulated with purified LPG and GIPLs from both species. Nitric oxide and cytokine production were performed. MAPKs (p38 and JNK) and NF-kB activation were evaluated in J774.1 macrophages and CHO cells, respectively.
Results
LPGs were extracted, purified and analysed by western-blot, showing that LPG from L88 strain was longer than that of Cobaia strain. LPGs and GIPLs were depolymerised and their sugar content was determined. LPGs from both strains did not present side chains, having the common disaccharide Gal(β1,4)Man(α1)-PO4. The GIPL from L88 strain presented galactose in its structure, suggestive of type II GIPL. On the other hand, the GIPL of Cobaia strain presented an abundance of glucose, a characteristic not previously observed. Mice peritoneal macrophages from C57BL/6 and knock-outs (TLR2 -/- and TLR4 -/-) were primed with IFN-γ and stimulated with glycoconjugates and live parasites. No activation of NO or cytokines was observed with live parasites. On the other hand, LPGs and GIPLs were able to activate the production of NO, IL-6, IL-12 and TNF–α preferably via TRL2. However, in CHO cells, only GIPLs were able to activate TRL2 and TRL4. In vivo studies using male guinea pigs (Cavia porcellus) showed that only strain L88 was able to develop more severe ulcerated lesions especially in the presence of salivary gland extract (SGE).
Conclusion
The two L. enriettii strains exhibited polymorphisms in their LPGs and GIPLs and those features may be related to a more pro-inflammatory profile in the L88 strain.
【 授权许可】
2015 Paranaiba et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150404043700914.pdf | 2624KB | download | |
Figure 10. | 37KB | Image | download |
Figure 9. | 17KB | Image | download |
Figure 8. | 21KB | Image | download |
Figure 7. | 45KB | Image | download |
Figure 6. | 72KB | Image | download |
Figure 5. | 57KB | Image | download |
Figure 4. | 62KB | Image | download |
Figure 3. | 18KB | Image | download |
Figure 2. | 13KB | Image | download |
Figure 1. | 34KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Machado MI, Milder RV, Pacheco RS, Silva M, Braga RR, Lainson R. Naturally acquired infections with Leishmania enrietti Muniz and Medina 1948 in guinea-pigs from São Paulo, Brazil. Parasitology. 1994; 109:135-8.
- [2]Muniz J, Medina HS. Leishmaniose tegumentar do cobaio (Leishmania enriettii n.sp). Hospital. 1948; 33:7-25.
- [3]Luz E, Giovannoni M, Borba AM. Infecção de Lutzomyia monticola por Leishmania enriettii. An Fac Med Univ Fed Paraná. 1967; 9:121-8.
- [4]Lobato Paraense V. The spread of Leishmania enriettii through the body of the guinea pig. Trop Med Hyg. 1953; 47:556-66.
- [5]Bryceson AD. Immunity in cutaneous leishmaniasis of the guinea-pig. Clin Exp Immunol. 1970; 7:301-41.
- [6]Schottelius J. Selective lectin reactions of two stocks of Leishmania enriettii with differing pathogenicity. J Parasitol Res. 1987; 73:1-8.
- [7]Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA et al.. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011; 41:571-9.
- [8]De Assis RR, Ibraim IC, Nogueira PM, Soares RP, Turco SJ. Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphogycan and glycoinositolphospholipids and interaction with hosts. Biochim Biophys Acta: General Subjects. 2012; 13:1-12.
- [9]McConville MJ, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. J Biochem. 1993; 294:305-24.
- [10]McConville MJ, Homans SW, Thomas-Oates JE, Dell A, Bacic A. Structures of the Glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990; 265:7385-94.
- [11]Assis RR, Ibraim IC, Noronha FS, Turco SJ, Soares RP. Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure. PLos Negl Trop Dis. 2012;6:e 1543.
- [12]Orlandi PA, Turco SJ. Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem. 1987; 262:10384-91.
- [13]Bogdan C, Röllinghoff M. How do protozoan parasites survive inside macrophages. Parasitol Today. 1999; 15:22-8.
- [14]Wilhelm P, Ritter U, Labbow S, Donhauser N, Röllinghoff M, Bogdan C et al.. Rapidly fatal Leishmaniasis in resistant C57BL/6 mice lacking TNF. J Immunol. 2001; 166:4012-9.
- [15]Dermine JF, Scianimanico S, Privé C, Descoteaux A, Desjardins M. Leishmania promastigotes Require Lipophosphoglycan to Actively Modulate the Fusion Properties of Phagosomes at an Early Step of Phagocytosis. Cell Microbiol. 2000; 2:115-26.
- [16]Piedrafita D, Proudfoot L, Nikolaev AV, Xu D, Sands W, Feng GJ et al.. Regulation of macrophage IL-12 synthesis by Leishmania phosphoglycans. Eur J Immunol. 1999; 29:235-344.
- [17]De Carvalho-Vivarini A, Pereira RM, Teixeira KL, Calegari-Silva TC, Bellio M, Laurenti MD et al.. Human Cutaneous Leishmaniasis: Interferon- dependent expression of double-stranded RNA-dependent Protein Kinase (PKR) via TLR2. Faseb J. 2011; 25:4162-73.
- [18]Dermine JF, Goyette G, Houde M, Turco SJ, Desjardins M. Leishmania donovani Lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol. 2005; 7:1263-70.
- [19]Brittingham A, Mosser DM. Exploitation of the complement system by Leishmania promastigotas. Parasitol Today. 1996; 12:444-7.
- [20]Proudfoot L, Nikolaev AV, Feng GJ, Wei WQ, Ferguson MA, Brimacombe JS et al.. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Nat Acad Sci USA. 1996; 93:10984-9.
- [21]Ibraim IC, de Assis RR, Pessoa NL, Campos MA, Melo MN, Turco SJ et al.. Two biochemically distinct lipophosphoglycans from Leishmania braziliensis and Leishmania infantum trigger different innate immune responses in murine macrophages. Parasit Vectors. 2013; 6:1-11. BioMed Central Full Text
- [22]Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, Higson AP et al.. Extracellular Signal-related Kinase (ERK) and P38 Mitogen-activated Protein (MAP) kinases differentially regulate the Lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage Il-12 production by targeting ERK MAP kinase. J Immunol. 1999; 163:6403-12.
- [23]De Veer MJ, Curtis JM, Baldwin TM, Di Donato JA, Sexton A, McConville MJ et al.. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol. 2003; 33:2822-31.
- [24]Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG et al.. Leishmania Lipophosphoglycan (LPG) Activates NK Cells Through Toll-like Receptor-2. Mol Biochem Parasitol. 2003; 130:65-74.
- [25]Rojas-Bernabé A, Garcia-Hernández O, Maldonado-Bernal C, Delegado-Dominguez J, Ortega E, Gutiérrez-Kobeh L et al.. Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4. Parasitology. 2014; 141:788-800.
- [26]Guimarães-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceição-Silva F et al.. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci USA. 2009; 106:6748-53.
- [27]Luz NF, Andrade BB, Feijó DF, Araújo-Santos T, Carvalho GQ, Andrade D et al.. Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection. J Immunol. 2012; 188:4460-7.
- [28]Pimenta PFP, Turco SJ, McConville MJ, Lawyer PG, Perkins P, Sacks DL. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992; 234:212-4.
- [29]Pimenta PFP, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM et al.. Evidence that vectorial competence of phlebotomine sandflies for different species is controlled by structural polymorphisms in the surface of lipophosphoglycan. Proc Nat Acad Sci USA. 1994; 91:9155-9.
- [30]Turco SJ, Sacks DL. Control of Leishmania-sand fly interactions by polymorphisms in lipophosphoglycan structure. Meth Enzymol. 2003; 363:377-81.
- [31]Kamhawi S, Ortigao MR, Pham VM, Kumar S, Lawyer PG, Turco SJ et al.. A role for insect galectins in parasite survival. Cell. 2004; 119:329-41.
- [32]Tuon FF, Amato VS, Bacha HA, Almusawi T, Duarte MI, Amato Neto V. Toll like receptors and leishmaniasis. Infect Immun. 2008; 76:866-72.
- [33]Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT et al.. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sandfly vector Lutzomyia longipalpis. Mol Biochem Parasitol. 2002; 121:213-24.
- [34]Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal Chem. 1956; 28:350-6.
- [35]Soares RP, Barron T, McCoy-Simandle K, Svobodova M, Warburg A, Turco SJ. Leishmania tropica: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different Phlebotomus species. Exp Parasitol. 2004; 107:105-14.
- [36]Kolodziej H, Radtke OA, Kiderlen AF. Stimulus (polyphenol, IFN-gamma, LPS)-dependent nitric oxide production and antileishmanial effects in RAW 264.7 macrophages. Phytochemistry. 2008; 69:3103-10.
- [37]Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW et al.. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem. 1999; 274:33419-25.
- [38]Delude RL, Yoshimura A, Ingalls RR, Golenbock DT. Construction of a lipopolysaccharide reporter cell line and its use in identifying mutants defective in endotoxin, but not TNF-alpha, signal transduction. J Immunol. 1998; 161:3001-9.
- [39]Modi GB, Tesh RB. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol. 1983; 20:568-9.
- [40]Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E et al.. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre exposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Biol Chem. 1998; 188:1941-53.
- [41]Tolson DL, Turco SJ, Beecroft RP, Pearson TW. The immunochemical structure and surface arrangement of Leishmania donovani lipophosphoglycan determined using monoclonal antibodies. Mol Biochem Parasitol. 1989; 35:109-18.
- [42]Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF et al.. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol. 2011; 41:811-20.
- [43]Soares RP, Cardoso TL, Barron T, Araújo MS, Pimenta PF, Turco SJ. Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. Int J Parasitol. 2005; 35:245-53.
- [44]Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in Leishmaniasis. Annu Rev Microbiol. 2001; 55:453-83.
- [45]Schneider P, Schnur LF, Jaffe CL, Ferguson MA, McConville MJ. Glycoinositolphospholipid profiles of four serotypically distinct old world Leishmania strains. J Biochem. 1994; 304:603-9.
- [46]Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med. 1995; 181:685-97.
- [47]Zawadzki J, Scholz C, Currie G, Coombs GH, McConville MJ. The glycoinositolphospholipids from Leishmania panamensis contain unusual glycan and lipid moieties. J Mol Biol. 1998; 2:287-99.
- [48]Ilg T, Etges R, Overath P, McConville MJ, Thomas-Oates J, Thomas J et al.. Structure of Leishmania mexicana lipophosphoglycan. J Biol Chem. 1992; 267:6834-40.
- [49]Vargas-Inchaustegui DA, Tai W, Xin L, Hogg AE, Corry DB, Soong L. Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun. 2009; 77:2948-56.
- [50]Faria MS, Reis FC, Lima AP. Toll- like receptors in Leishmania infections: guardians or promoters? J Parasitol Res. 2012; 10:1-12.
- [51]Proudfoot L, O'Donnell CA, Liew FY. Glycoinositolphospholips of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995; 25:745-50.
- [52]Balaraman S, Singh VK, Tewary P, Madhubala R. Leishmania lipophosphoglycan activates the transcription factor activating protein 1 in J774A.1 macrophages through the extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase. Mol Biochem Parasitol. 2005; 139:117-27.
- [53]Gazzinelli RT, Denkers EY. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol. 2006; 6:895-906.
- [54]Kumagai Y, Akira S. Identification and functions of pattern-recognition receptors. J Allergy Clin Immunol. 2010; 125:985-92.
- [55]Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomia longipalpis enhance Leishmania infectivity. Science. 1988; 239:1306-8.
- [56]Laurenti MD, da Matta VL, Pernichelli T, Secundino NF, Pinto LC, Corbett CE et al.. Effects of salivary gland homogenate from wild-caught and laboratory-reared Lutzomyia longipalpis on the evolution and immunomodulation of Leishmania (Leishmania) amazonensis infection. Scand J Immunol. 2009; 70:389-95.
- [57]Laurenti MD, Silveira VM, Secundino NF, Corbett CE, Pimenta PP. Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol International. 2009; 58:220-6.
- [58]Brown SJ, Rosalsky JH. Blood leukocyte response in hosts parasitized by the hematophagous arthropods Triatoma protracta and Lutzomyia longipalpis. Am J Trop Med Hyg. 1984; 33:499-505.
- [59]Theodos CM, Ribeiro JM, Titus RG. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun. 1991; 59:1592-8.
- [60]Sádlová J. The life history of Leishmania (Kinetoplastida: Trypanosomatidae). Acta Soc Zool Bohem. 1999; 63:331-66.
- [61]Donnelly KB, Lima HC, Titus RG. Histologic characterization of experimental cutaneous leishmaniasis in mice infected with Leishmania braziliensis in the presence or absence of sand fly vector salivary gland lysate. J Parasitol. 1998; 84:97-103.
- [62]Melo MN, Williams P, Tafuri WL. Influence of lysates of the salivary glands of Lutzomyia longipalpis on the development of a Leishmania major-like parasite in the skin of the golden hamster. Ann Trop Med Parasitol. 2001; 95:59-68.