期刊论文详细信息
Source Code for Biology and Medicine
MagiCMicroRna: a web implementation of AgiMicroRna using shiny
Danyel GJ Jennen1  Jos CS Kleinjans1  Daniel HJ Theunissen1  Maarten LJ Coonen1 
[1] Department of Toxicogenomics, Maastricht, 6200 MD, The Netherlands
关键词: Agilent;    Data analysis;    Microarray analysis;    MicroRNA;    Web interface;   
Others  :  1146051
DOI  :  10.1186/s13029-015-0035-5
 received in 2014-08-06, accepted in 2015-03-15,  发布年份 2015
PDF
【 摘 要 】

Background

MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach.

Results

We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining).

Conclusions

The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git.

【 授权许可】

   
2015 Coonen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403090831434.pdf 415KB PDF download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Lopez-Romero P. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics. 2011; 12:64. BioMed Central Full Text
  • [2]Lopez-Romero P, Gonzalez MA, Callejas S, Dopazo A, Irizarry RA. Processing of Agilent microRNA array data. BMC Res Notes. 2010; 3:18. BioMed Central Full Text
  • [3]Shiny. Web application framework for R. R package version 0.9.1. [http://CRAN.R-project.org/package=shiny]
  • [4]Navon R, Wang H, Steinfeld I, Tsalenko A, Ben-Dor A, Yakhini Z. Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS One. 2009; 4:e8003.
  • [5]Krauskopf J, Caiment F, Claessen SM, Johnson KJ, Warner RL, Schomaker SJ et al.. Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol Sci. 2015; 143:268-76.
  • [6]Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, Chen S et al.. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget. 2015; 6:3268-79.
  • [7]Spiekermann M, Belge G, Winter N, Ikogho R, Balks T, Bullerdiek J et al.. MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology. 2015; 3:78-84.
  文献评价指标  
  下载次数:14次 浏览次数:8次