期刊论文详细信息
Virology Journal
Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement
Gwong-Jen J Chang1  Wayne D Crill1  Holly R Hughes1 
[1] Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, 3150 Rampart Road, Fort Collins, CO, 80521, USA
关键词: Immune refocusing;    Cross-reactive antibody;    Dengue hemorrhagic fever;    Antibody-dependent enhancement;    Vaccine;    Dengue virus;   
Others  :  1154495
DOI  :  10.1186/1743-422X-9-115
 received in 2011-12-16, accepted in 2012-05-25,  发布年份 2012
PDF
【 摘 要 】

Background

Dengue viruses (DENV) are the most important arboviruses of humans and cause significant disease. Infection with DENV elicits antibody responses to the envelope glycoprotein, predominantly against immunodominant, cross-reactive, weakly-neutralizing epitopes. These weakly-neutralizing antibodies are implicated in enhancing infection via Fcγ receptor bearing cells and can lead to increased viral loads that are associated with severe disease. Here we describe results from the development and testing of cross-reactivity reduced DENV-2 DNA vaccine candidates that contain substitutions in immunodominant B cell epitopes of the fusion peptide and domain III of the envelope protein.

Results

Cross-reactivity reduced and wild-type vaccine candidates were similarly immunogenic in outbred mice and elicited high levels of neutralizing antibody, however mice immunized with cross-reactivity reduced vaccines produced significantly reduced levels of immunodominant cross-reactive antibodies. Sera from mice immunized with wild-type, fusion peptide-, or domain III- substitution containing vaccines enhanced heterologous DENV infection in vitro, unlike sera from mice immunized with a vaccine containing a combination of both fusion peptide and domain III substitutions. Passive transfer of immune sera from mice immunized with fusion peptide and domain III substitutions also reduced the development of severe DENV disease in AG129 mice when compared to mice receiving wild type immune sera.

Conclusions

Reducing cross-reactivity in the envelope glycoprotein of DENV may be an approach to improve the quality of the anti-DENV immune response.

【 授权许可】

   
2012 Hughes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407104740505.pdf 677KB PDF download
Figure 3. 14KB Image download
Figure 2. 65KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, Simmons C, Kalayanarooj S, Lum L, McCall PJ, Lloyd L, et al.: Towards a global dengue research agenda. Trop Med Int Health 2007, 12:695-699.
  • [2]Sabin AB: Research on dengue during WWII. Am J Trop Med Hyg 1952, 1:30-50.
  • [3]Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, Salitul V, Phanthumachinda B, Halstead SB: Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 1984, 120:653-669.
  • [4]Guzman MG, Kouri GP, Bravo J, Soler M, Vazquez S, Morier L: Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 1990, 42:179-184.
  • [5]Halstead SB, O'Rourke EJ: Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977, 146:201-217.
  • [6]Rothman AL, Ennis FA: Immunopathogenesis of Dengue hemorrhagic fever. Virology 1999, 257:1-6.
  • [7]Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duangchinda T, Dong T, Rowland-Jones S, et al.: Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 2003, 9:921-927.
  • [8]Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, Li CM, Lin SC, Ho ST, Huang JH, King CC: High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 2003, 305:330-338.
  • [9]Swaminathan S, Batra G, Khanna N: Dengue vaccines: state of the art. Expert Opin Ther Pat 2010, 20:819-835.
  • [10]CDC: Locally acquired dengue- Key West, Florida, 2009–2010. MMWR 2010, 59:577-581.
  • [11]Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC: The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995, 375:291-298.
  • [12]Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX: Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 2001, 75:4268-4275.
  • [13]Crill WD, Chang GJ: Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 2004, 78:13975-13986.
  • [14]Crill WD, Roehrig JT: Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 2001, 75:7769-7773.
  • [15]Roehrig JT, Bolin RA, Kelly RG: Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 1998, 246:317-328.
  • [16]Sukupolvi-Petty S, Austin SK, Purtha WE, Oliphant T, Nybakken GE, Schlesinger JJ, Roehrig JT, Gromowski GD, Barrett AD, Fremont DH, Diamond MS: Type- and Subcomplex-Specific Neutralizing Antibodies against Domain III of Dengue Virus Type 2 Envelope Protein Recognize Adjacent Epitopes. J Virol 2007, 81:12816-12826.
  • [17]Stiasny K, Kiermayr S, Holzmann H, Heinz FX: Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 2006, 80:9557-9568.
  • [18]Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang WK: Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 2008, 82:6631-6643.
  • [19]Crill WD, Hughes HR, Delorey MJ, Chang GJ: Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One 2009, 4:e4991.
  • [20]de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WM, Kraus A, Olivarez NP, Pham Q, Brian J, Tsai WY, et al.: In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis 2011, 5:e1188.
  • [21]Ndifon W, Wingreen NS, Levin SA: Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. Proc Natl Acad Sci USA 2009, 106:8701-8706.
  • [22]Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, Chen BR, Nelson CA, Kostyuchenko VA, Holdaway HA, Chipman PR, et al.: Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 2009, 28:3269-3276.
  • [23]Zellweger RM, Prestwood TR, Shresta S: Enhanced Infection of Liver Sinusoidal Endothelial Cells in a Mouse Model of Antibody-Induced Severe Dengue Disease. Cell Host Microbe 2010, 7:128-139.
  • [24]Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, Sukupolvi-Petty S, Navarro-Sanchez E, Young PR, de Silva AM, et al.: The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 2010, 8:271-283.
  • [25]Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, Johnson S, Diamond MS, Beatty PR, Harris E: Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 2010, 6:e1000790.
  • [26]Rodenhuis-Zybert IA, Moesker B, da Silva Voorham JM, van der Ende-Metselaar H, Diamond MS, Wilschut J, Smit JM: Enhancing effect of a fusion-loop antibody on the infectious properties of immature flavivirus particles. J Virol 2011, 85:11800-11808.
  • [27]Schmitz J, Roehrig J, Barrett A, Hombach J: Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine 2011, 29:7276-7284.
  • [28]Chang GJ, Hunt AR, Holmes DA, Springfield T, Chiueh TS, Roehrig JT, Gubler DJ: Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 2003, 306:170-180.
  • [29]Goncalvez AP, Purcell RH, Lai CJ: Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 2004, 78:12919-12928.
  • [30]Gromowski GD, Barrett AD: Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology 2007, 366:349-360.
  • [31]Lok SM, Kostyuchenko V, Nybakken GE, Holdaway HA, Battisti AJ, Sukupolvi-Petty S, Sedlak D, Fremont DH, Chipman PR, Roehrig JT, et al.: Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 2008, 15:312-317.
  • [32]Kliks SC, Nimmanitya S, Nisalak A, Burke DS: Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 1988, 38:411-419.
  • [33]Littaua R, Kurane I, Ennis FA: Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol 1990, 144:3183-3186.
  • [34]Mady BJ, Kurane I, Erbe DV, Fanger MW, Ennis FA: Neuraminidase augments Fc gamma receptor II-mediated antibody-dependent enhancement of dengue virus infection. J Gen Virol 1993, 74(Pt 5):839-844.
  • [35]Guy B, Chanthavanich P, Gimenez S, Sirivichayakul C, Sabchareon A, Begue S, Yoksan S, Luxemburger C, Lang J: Evaluation by flow cytometry of antibody-dependent enhancement (ADE) of dengue infection by sera from Thai children immunized with a live-attenuated tetravalent dengue vaccine. Vaccine 2004, 22:3563-3574.
  • [36]Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P, Porter K, Rudiman IF, Yuwono D, Puthavathana P, Marovich MA: Role of Dendritic Cells in antibody dependent enhancement of dengue infection. J Virol 2008, 82:3939-3951.
  • [37]Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM: Immature dengue virus: a veiled pathogen? PLoS Pathog 2010, 6:e1000718.
  • [38]Morens DM, Halstead SB, Marchette NJ: Profiles of antibody-dependent enhancement of dengue virus type 2 infection. Microb Pathog 1987, 3:231-237.
  • [39]Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE: Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg 1985, 34:162-169.
  • [40]Johnson AJ, Roehrig JT: New mouse model for dengue virus vaccine testing. J Virol 1999, 73:783-786.
  • [41]Miller N: Recent progress in dengue vaccine research and development. Curr Opin Mol Ther 2010, 12:31-38.
  • [42]Huang CY, Butrapet S, Moss KJ, Childers T, Erb SM, Calvert AE, Silengo SJ, Kinney RM, Blair CD, Roehrig JT: The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology 2009, 396:305-315.
  • [43]Onda M: Reducing the immunogenicity of protein therapeutics. Curr Drug Targets 2009, 10:131-139.
  • [44]Rajamani D, Thiel S, Vajda S, Camacho CJ: Anchor residues in protein-protein interactions. Proc Natl Acad Sci USA 2004, 101:11287-11292.
  • [45]Sundberg EJ, Mariuzza RA: Molecular recognition in antibody-antigen complexes. Adv Protein Chem 2002, 61:119-160.
  • [46]Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH, Diamond MS: The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 2007, 1:135-145.
  • [47]Chau TN, Hieu NT, Anders KL, Wolbers M, le Lien B, Hieu LT, Hien TT, Hung NT, Farrar J, Whitehead S, Simmons CP: Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis 2009, 200:1893-1900.
  • [48]Roehrig JT, Mathews JH, Trent DW: Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 1983, 128:118-126.
  • [49]Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, et al.: Cross-reacting antibodies enhance dengue virus infection in humans. Science 2010, 328:745-748.
  • [50]Hunt AR, Cropp CB, Chang GJ: A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J Virol Methods 2001, 97:133-149.
  • [51]Purdy DE, Chang GJ: Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology 2005, 333:239-250.
  • [52]Buonaguro L, Wang E, Tornesello ML, Buonaguro FM, Marincola FM: Systems biology applied to vaccine and immunotherapy development. BMC Syst Biol 2011, 5:146. BioMed Central Full Text
  • [53]Tobin GJ, Trujillo JD, Bushnell RV, Lin G, Chaudhuri AR, Long J, Barrera J, Pena L, Grubman MJ, Nara PL: Deceptive imprinting and immune refocusing in vaccine design. Vaccine 2008, 26:6189-6199.
  • [54]Garrity RR, Rimmelzwaan G, Minassian A, Tsai WP, Lin G, de Jong JJ, Goudsmit J, Nara PL: Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. J Immunol 1997, 159:279-289.
  • [55]Nara PL, Tobin GJ, Chaudhuri AR, Trujillo JD, Lin G, Cho MW, Levin SA, Ndifon W, Wingreen NS: How can vaccines against influenza and other viral diseases be made more effective? PLoS Biol 2010, 8:e1000571.
  • [56]Roberson JA, Crill WD, Chang GJ: Differentiation of West Nile and St. Louis Encephalitis Virus Infections Using Cross-Reactivity Reduced Noninfectious Virus-like Particles. J Clin Microbiol 2007, 45:3167-3174.
  文献评价指标  
  下载次数:21次 浏览次数:17次