期刊论文详细信息
Orphanet Journal of Rare Diseases
Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia
John Christodoulou5  Sandra T Cooper1  Mark Davis7  Michel C Tchan4  Agnes Rotig3  Pascale de Lonlay3  Rachael Duff6  Joëlle Rudinger-Thirion2  Minal J Menezes8  Lisa G Riley8 
[1] Institute for Neuroscience and Muscle Research, Kids Research Institute, Children’s Hospital at Westmead 2145, Sydney, Australia;Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg 67084, France;Université Paris Descartes and INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France;Department of Genetic Medicine, Westmead Hospital, Sydney, Australia;Discipline of Genetic Medicine, Sydney Medical School, University of Sydney 2006, Sydney, Australia;Centre for Medical Research, University of Western Australia and Western Australian Institute for Medical Research, Perth, Western Australia 6009, Australia;Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia;Discipline of Paediatrics & Child Health, University of Sydney 2006, Sydney, Australia
关键词: Mutation;    Inborn error of metabolism;    Lactic acidaemia;    Muscle diseases;    Mitochondrial myopathies;    Aminoacyl tRNA-synthetase;    Myopathy with lactic acidosis and sideroblastic anemia;    Mitochondrial respiratory chain;   
Others  :  863354
DOI  :  10.1186/1750-1172-8-193
 received in 2013-08-16, accepted in 2013-12-13,  发布年份 2013
PDF
【 摘 要 】

Background

Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2.

Methods

Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects.

Results

PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-α and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism.

Conclusion

In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.

【 授权许可】

   
2013 Riley et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725041551984.pdf 958KB PDF download
64KB Image download
63KB Image download
82KB Image download
【 图 表 】

【 参考文献 】
  • [1]Skladal D, Halliday J, Thorburn D: Minimum birth prevalence of mitochondrial respiratory chain disorders. Brain 2003, 126:1905-1912.
  • [2]Rotig A: Genetic bases of mitochondrial respiratory chain disorders. Diabetes Metab 2010, 36:97-107.
  • [3]Fernandez-Vizarra E, Enriquez J, Perez-Martos A, Montoya J, Fernandez-Silva P: Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 2011, 11:207-213.
  • [4]Ryan M, Hoogenraad N: Mitochondrial-nuclear communications. Ann Rev Biochem 2007, 76:701-722.
  • [5]Thorburn D: Practical problems in detecting abnormal mitochondrial function and genomes. Human Reprod 2000, 15(Suppl 2):57-67.
  • [6]Rotig A: Human diseases with imparied mitochondrial protein synthesis. Biochim Biophys Acta 1807, 2011:1198-1205.
  • [7]Messmer M, Florentz C, Schwenzer H, Scheper G, van der Knaap M, Marechal-Drouard L, Sissler M: A human pathology-related mutation prevents import of an aminoacyl-tRNA synthetase into mitochondria. Biochem J 2011, 433:441-446.
  • [8]Steenweg M, Ghezzi D, Haack T, Abbink T, Martinelli D, van Berkel C, Bley A, Diogo L, Grillo E, Te Water Naude J, et al.: Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations. Brain 2012, 135:1387-1394.
  • [9]Bayat V, Thiffault I, Jaiswal M, Tetreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire M, Mathieu J, et al.: Mutations in the mitochondrial methionyl-tRNA synthetase casue a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. Plos Biol 2012, 10:1-19.
  • [10]Edvardson S, Shaag A, Kolesnikova O, Gomori J, Tarassov I, Einbinder T, Saada A, Elpeleg O: Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 2007, 81:857-862.
  • [11]Pierce S, Chisholm K, Lynch E, Lee M, Walsh T, Opitz J, Li W, Klevit R, King M-C: Mutations in mitochondrial histidyl tRNA synhtetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Asi USA 2011, 108:6543-6548.
  • [12]Pierce S, Gersak K, Michaelson-Cohen R, Walsh T, Lee M, Malach D, Klevit R, King M-C, Levy-Lahad E: Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet 2013, 92:614-620.
  • [13]Götz A, Tyynismaa H, Euro L, Ellonen P, Hyotylainen T, Ojala T, Hamalainen R, Tommiska J, Raivio T, Oresic M, et al.: Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 2011, 88:635-642.
  • [14]Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, Segel R, Elpeleg O, Nassar S, Frishberg Y: Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 2011, 88:193-200.
  • [15]Elo J, Yadavalli S, Euro L, Isohanni P, Götz A, Carroll C, Valanne L, Alkuraya F, Uusimaa J, Paetau A, et al.: Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Human Mol Genet 2012, 21:4521-4529.
  • [16]Riley L, Cooper S, Hickey P, Rudinger-Thirion J, Mckenzie M, Compton A, Lim S, Thorburn D, Ryan M, Giege R, et al.: Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YASR2, causes myopathy, lactic acidosis, and sideroblastic anemia - MLASA syndrome. Am J Hum Genet 2010, 97:1-8.
  • [17]Patton J, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian : Mitochondrial myopathy and sideroblastic anemia (MLASA). J Biol Chem 2005, 280:19823-19828.
  • [18]Antonellis A, Green E: The role of aminoacyl-tRNA synthetases in genetic diseases. Ann Rev Genomics Hum Genet 2008, 9:87-107.
  • [19]Vianello D, Sevini F, Castellani G, Lomartire L, Capri M, Franceschi C: HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment. Human Mutat 2013, 9:1189-1194.
  • [20]Bonnefond L, Fender A, Rudinger-Thirion J, Giege R, Florentz C, Sissler C: Toward the full set of human mitochondrial aminoacyl-tRNA synhtetases: characterization of AspRS and TyrRS. Biochemistry 2005, 44:4805-4816.
  • [21]Cooper S, Kizana E, Yates J, Lo H, Yang N, Wu Z, Alexander I, North K: Dystrophinopathy carrier determination and detection of protein deficiencies in muscular dystophy using lentiviral Myo-D forced myogenesis. Neuromuscul Disord 2007, 17:276-284.
  • [22]Kirby D, Thorburn D, Turnbull D, Taylor R: Biochemical assays of respiratory chain complex activity. Methods Cell Biol 2007, 80:93-119.
  • [23]Bai R, Wong L: Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn 2005, 7:613-622.
  • [24]Bonnefond L, Frugier M, Touze E, Lorber B, Florentz C, Giege R, Sauter C, Rudinger-Thirion J: Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. Structure 2007, 15:1505-1516.
  • [25]Remels A, Langen R, Schrauwen P, Schaart G, Schols A, Gosker H: Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol 2010, 315:113-120.
  • [26]Antonicka H, Sasarman F, Kennaway N, Shoubridge E: The molecular basis for tissue specificity of the oxidative phophorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Human Mol Genet 2006, 15:1835-1846.
  • [27]Scarpulla R: Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813, 2011:1269-1278.
  • [28]Campbell C, Kolesar J, Kaufman B: Mitochondrial transcription factor A regualtes mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819, 2012:921-929.
  • [29]Castro M, Huerta C, Reguero J, Soto M, Doménech E, Alvarez V, Gómez-Zaera M, Nunes V, González P, Corao A, Coto E: Mitochondrial DNA haplogroups in Spanish patients with hypertophic cardiomyopathy. Int J Cardiol 2006, 112:202-206.
  • [30]Castro M, Terrados N, Reguero J, Alvarez V, Coto E: Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 2007, 6:354-357.
  • [31]Gómez-Durán A, Pacheu-Grau D, López-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez M, Ruiz-Pesini E: Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Human Mol Genet 2010, 19:3343-3353.
  • [32]Gómez-Durán A, Pacheu-Grau D, Martínez-Romero I, López-Gallardo E, López-Pérez M, Montoya J, Ruiz-Pesini E: Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim Biophys Acta 1822, 2012:1216-1222.
  • [33]Sasarman F, Nishimura T, Thiffault I, Shoubridge E: A novel mutation in YARS2 casues myopathy with lactic acidosis and sideroblastic anemia. Human Mutat 2012, 33:1201-1206.
  • [34]Amiott E, Jaehning J: Mitochondrial transcription is regulated via an ATP "sensing" mechanism that couples RNA abundance to respiration. Mol Cell 2006, 22:329-338.
  • [35]Bonawitz N, Clayton D, Shadel G: Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 2006, 24:813-825.
  • [36]Moyes C, Hood D: Origins and consequences of mitochondrial variation in vertebrate muscle. Ann Rev Physiol 2003, 65:177-201.
  文献评价指标  
  下载次数:30次 浏览次数:40次