期刊论文详细信息
Retrovirology
Friend retrovirus drives cytotoxic effectors through Toll-like receptor 3
Ulf Dittmer3  Mario L Santiago1  Mengji Lu3  Carsten J Kirchning2  Bradley S Barrett1  Michael S Harper1  Anna M Sigmund2  Sandra Francois3  Kathrin Gibbert3 
[1] Department of Medicine, University of Colorado Denver, Aurora 80045, CO, USA;Institute for Medical Microbiology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany;Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany
关键词: Pathogen recognition;    Cytotoxic T cells;    NK cells;    Dendritic cells;    Friend Retrovirus;    Toll-like receptor 3;   
Others  :  1132008
DOI  :  10.1186/s12977-014-0126-4
 received in 2014-10-24, accepted in 2014-12-05,  发布年份 2014
PDF
【 摘 要 】

Background

Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication intermediates of a specific virus species. TLR7 mediates host sensing of retroviruses and could significantly influence retrovirus-specific antibody responses. However, the origin of efficient cell-mediated immunity towards retroviruses is unknown. Double-stranded RNA intermediates produced during retroviral replication are good candidates for immune stimulatory viral products. Thus, we considered TLR3 as primer of cell-mediated immunity against retroviruses in vivo.

Results

Infection of mice deficient in TLR3 (TLR3−/−) with Friend retrovirus (FV) complex revealed higher viral loads during acute retroviral infection compared to wild type mice. TLR3−/− mice exhibited significantly lower expression levels of type I interferons (IFNs) and IFN-stimulated genes like Pkr or Ifi44, as well as reduced numbers of activated myeloid dendritic cells (DCs) (CD86+ and MHC-II+). DCs generated from FV-infected TLR3−/− mice were less capable of priming virus-specific CD8+ T cell proliferation. Moreover, cytotoxicity of natural killer (NK) cells as well as CD8+ T cells were reduced in vitro and in vivo, respectively, in FV-infected TLR3-/- mice.

Conclusions

TLR3 mediates antiretroviral cytotoxic NK cell and CD8+ T cell activity in vivo. Our findings qualify TLR3 as target of immune therapy against retroviral infections.

【 授权许可】

   
2014 Gibbert et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303141020706.pdf 748KB PDF download
Figure 5. 54KB Image download
Figure 4. 17KB Image download
Figure 3. 15KB Image download
Figure 2. 56KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 2004, 4:499-511.
  • [2]Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013, 341:903-906.
  • [3]Sun L, Wu J, Du F, Chen X, Chen ZJ: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339:786-791.
  • [4]Cai X, Chiu YH, Chen ZJ: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Molecular cell 2014, 54:289-296.
  • [5]Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008, 89:1-47.
  • [6]Gringhuis SI, van der Vlist M, van den Berg LM, den Dunnen J, Litjens M, Geijtenbeek TB: HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 2010, 11:419-426.
  • [7]Mogensen TH, Melchjorsen J, Larsen CS, Paludan SR: Innate immune recognition and activation during HIV infection. Retrovirology 2010, 7:54. BioMed Central Full Text
  • [8]Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N: Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 2005, 115:3265-3275.
  • [9]Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, Schilte C, Chaperot L, Plumas J, Randall RE, Si-Tahar M, Mammano F, Albert ML, Schwartz O: Innate sensing of HIV-infected cells. PLoS Pathog 2011, 7:e1001284.
  • [10]Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J: TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 2011, 472:361-365.
  • [11]Browne EP, Littman DR: Myd88 is required for an antibody response to retroviral infection. PLoS pathogens 2009, 5:e1000298.
  • [12]Kane M, Case LK, Wang C, Yurkovetskiy L, Dikiy S, Golovkina TV: Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry. Immunity 2011, 35:135-145.
  • [13]Gibbert K, Joedicke JJ, Meryk A, Trilling M, Francois S, Duppach J, Kraft A, Lang KS, Dittmer U: Interferon-alpha Subtype 11 Activates NK Cells and Enables Control of Retroviral Infection. PLoS pathogens 2012, 8:e1002868.
  • [14]Littwitz E, Francois S, Dittmer U, Gibbert K: Distinct roles of NK cells in viral immunity during different phases of acute Friend retrovirus infection. Retrovirology 2013, 10:127. BioMed Central Full Text
  • [15]Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001, 413:732-738.
  • [16]Hajjar AM, Linial ML: Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol 1995, 69:5878-5882.
  • [17]Tounekti N, Mougel M, Roy C, Marquet R, Darlix JL, Paoletti J, Ehresmann B, Ehresmann C: Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. J Mol Biol 1992, 223:205-220.
  • [18]Alford RL, Honda S, Lawrence CB, Belmont JW: RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus. Virology 1991, 183:611-619.
  • [19]Kabat D: Molecular biology of Friend viral erythroleukemia. Curr Top Microbiol Immunol 1989, 148:1-42.
  • [20]Hasenkrug KJ, Dittmer U: The role of CD4 and CD8 T cells in recovery and protection from retroviral infection: lessons from the Friend virus model. Virology 2000, 272:244-249.
  • [21]Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003, 301:640-643.
  • [22]Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T: Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 1998, 17:1087-1095.
  • [23]Doyle S, Vaidya S, O'Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G: IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 2002, 17:251-263.
  • [24]Barchet W, Wimmenauer V, Schlee M, Hartmann G: Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr Opin Immunol 2008, 20:389-395.
  • [25]Barbalat R, Ewald SE, Mouchess ML, Barton GM: Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011, 29:185-214.
  • [26]Gerlach N, Schimmer S, Weiss S, Kalinke U, Dittmer U: Effects of Type I Interferons on Friend Retrovirus Infection (Erratum). J Virol 2007, 81:6160.
  • [27]Gerlach N, Schimmer S, Weiss S, Kalinke U, Dittmer U: Effects of type I interferons on Friend retrovirus infection. J Virol 2006, 80:3438-3444.
  • [28]Zelinskyy G, Dietze KK, Husecken YP, Schimmer S, Nair S, Werner T, Gibbert K, Kershaw O, Gruber AD, Sparwasser T, Dittmer U: The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood 2009, 114:3199-3207.
  • [29]Zelinskyy G, Kraft AR, Schimmer S, Arndt T, Dittmer U: Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infection. Eur J Immunol 2006, 36:2658-2670.
  • [30]Browne EP: Toll-like receptor 7 inhibits early acute retroviral infection through rapid lymphocyte responses. J Virol 2013, 87:7357-7366.
  • [31]Marques R, Antunes I, Eksmond U, Stoye J, Hasenkrug K, Kassiotis G: B lymphocyte activation by coinfection prevents immune control of friend virus infection. J Immunol 2008, 181:3432-3440.
  • [32]Gururajan M, Jacob J, Pulendran B: Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PloS one 2007, 2:e863.
  • [33]Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB: Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 2008, 14:1077-1087.
  • [34]Lee H, Komano J, Saitoh Y, Yamaoka S, Kozaki T, Misawa T, Takahama M, Satoh T, Takeuchi O, Yamamoto N, Matsuura Y, Saitoh T, Akira S: Zinc-finger antiviral protein mediates retinoic acid inducible gene I-like receptor-independent antiviral response to murine leukemia virus. Proc Natl Acad Sci U S A 2013, 110:12379-12384.
  • [35]Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004, 5:987-995.
  • [36]Kawai T, Akira S: Antiviral signaling through pattern recognition receptors. J Biochem 2007, 141:137-145.
  • [37]Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2:675-680.
  • [38]Iwasaki A, Pillai PS: Innate immunity to influenza virus infection. Nat Rev Immunol 2014, 14:315-328.
  • [39]Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S, Kawai T, Akira S: Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 2007, 179:4711-4720.
  • [40]Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ: TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 2007, 178:2182-2191.
  • [41]Xia J, Winkelmann ER, Gorder SR, Mason PW, Milligan GN: TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate. J Virol 2013, 87:12090-12101.
  • [42]Lazear HM, Pinto AK, Ramos HJ, Vick SC, Shrestha B, Suthar MS, Gale M Jr, Diamond MS: Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system. J Virol 2013, 87:11401-11415.
  • [43]Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M Jr: The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol 2013, 87:11416-11425.
  • [44]Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark EA, Kaja MK, Diamond MS, Gale M Jr: IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog 2010, 6:e1000757.
  • [45]Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, Gale M Jr, Diamond MS: The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol 2010, 84:12125-12138.
  • [46]Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS: Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 2008, 82:10349-10358.
  • [47]Jin YH, Kim SJ, So EY, Meng L, Colonna M, Kim BS: Melanoma differentiation-associated gene 5 is critical for protection against Theiler's virus-induced demyelinating disease. J Virol 2012, 86:1531-1543.
  • [48]Jin YH, Kaneyama T, Kang MH, Kang HS, Koh CS, Kim BS: TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection. J Neuroinflammation 2011, 8:178. BioMed Central Full Text
  • [49]Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B: Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 2004, 101:3516-3521.
  • [50]Moore MD, Hu WS: HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009, 11:91-102.
  • [51]Russell RS, Liang C, Wainberg MA: Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 2004, 1:23. BioMed Central Full Text
  • [52]Greatorex J: The retroviral RNA dimer linkage: different structures may reflect different roles. Retrovirology 2004, 1:22. BioMed Central Full Text
  • [53]Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM: Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009, 460:711-716.
  • [54]Tatematsu M, Nishikawa F, Seya T, Matsumoto M: Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun 2013, 4:1833.
  • [55]Gibbert K, Dietze KK, Zelinskyy G, Lang KS, Barchet W, Kirschning CJ, Dittmer U: Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol 2010, 185:6179-6189.
  • [56]Wang X, Chao W, Saini M, Potash MJ: A common path to innate immunity to HIV-1 induced by Toll-like receptor ligands in primary human macrophages. PLoS One 2011, 6:e24193.
  • [57]Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L, Zhou D, Ho W: A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology 2010, 131:40-49.
  • [58]Tsang J, Chain BM, Miller RF, Webb BL, Barclay W, Towers GJ, Katz DR, Noursadeghi M: HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation. AIDS 2009, 23:2255-2263.
  • [59]Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC: TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology 2009, 392:246-259.
  • [60]Swaminathan G, Rossi F, Sierra LJ, Gupta A, Navas-Martin S, Martin-Garcia J: A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages. PLoS Pathog 2012, 8:e1002937.
  • [61]Breckpot K, Escors D, Arce F, Lopes L, Karwacz K, Van Lint S, Keyaerts M, Collins M: HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 2010, 84:5627-5636.
  • [62]Kariko K, Ni H, Capodici J, Lamphier M, Weissman D: mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004, 279:12542-12550.
  • [63]Sironi M, Biasin M, Cagliani R, Forni D, De Luca M, Saulle I, Lo Caputo S, Mazzotta F, Macias J, Pineda JA, Caruz A, Clerici M: A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol 2012, 188:818-823.
  • [64]Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002, 3:196-200.
  • [65]Dittmer U, Brooks DM, Hasenkrug KJ: Characterization of a live-attenuated retroviral vaccine demonstrates protection via immune mechanisms. J Virol 1998, 72:6554-6558.
  • [66]Smith DS, Guo K, Barrett BS, Heilman KJ, Evans LH, Hasenkrug KJ, Greene WC, Santiago ML: Noninfectious retrovirus particles drive the APOBEC3/Rfv3 dependent neutralizing antibody response. PLoS Pathog 2011, 7:e1002284.
  • [67]Balkow S, Krux F, Loser K, Becker JU, Grabbe S, Dittmer U: Friend retrovirus infection of myeloid dendritic cells impairs maturation, prolongs contact to naive T cells, and favors expansion of regulatory T cells. Blood 2007, 110:3949-3958.
  文献评价指标  
  下载次数:39次 浏览次数:17次