期刊论文详细信息
Particle and Fibre Toxicology
Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon
Leopold Gustave Lehman1  Marie Florence Peka2  Gaëlle Tamdem Magne1  Odette Etoile Ngo Hondt1  Philippe Belong3  Calvin Tonga1  Jean Arthur Mbida Mbida1  Patrick Ntonga Akono1 
[1] Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala, Douala, Cameroon;Laboratory of Zoology, Department of Biology and Animal Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon;Higher Teacher training college, University of Yaoundé I, Yaoundé, Cameroon
关键词: Cameroon;    Urban setting;    Less urbanized setting;    Malaria;    Anopheles;    Hydro-agricultural lands;    Vegetable crop agriculture;   
Others  :  1224712
DOI  :  10.1186/s13071-015-0906-2
 received in 2015-04-03, accepted in 2015-05-18,  发布年份 2015
【 摘 要 】

Background

The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes’ diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon.

Methods

The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared.

Results

Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p < 0.0001). Physico-chemical parameters of breeding sites were not fundamentally different. Five anopheline species were identified; An. gambiae, An. funestus s.s., An. moucheti s.s., An. hancocki and An. nili s.s. In hydro-agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p < 0.0001) but the difference was nullified with the practice of vegetable crop agriculture (p = 0.2).

Conclusion

These results highlight the need for specific preventive measures that take into account the ecological peculiarities related to vegetable crop agriculture on hydro-agricultural lands, in order to protect inhabitants from malaria.

【 授权许可】

   
2015 Akono et al.

附件列表
Files Size Format View
Fig. 4. 65KB Image download
Fig. 3. 64KB Image download
Fig. 2. 68KB Image download
Fig. 1. 50KB Image download
Fig. 4. 65KB Image download
Fig. 3. 64KB Image download
Fig. 2. 68KB Image download
Fig. 1. 50KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Samé-Ekobo A, Fondjo E, Eouzan JP. Grands travaux et maladies à vecteurs au Cameroun: impact des aménagements ruraux et urbains sur le paludisme et autres maladies à vecteurs. IRD éditions, Paris; 2001.
  • [2]BUCREP. Troisième recensement générale de la population et de l’habitat: Rapport de présentation des résultats définitifs République du Cameroun; 2010. http://www.statistics-cameroon.org/downloads/Rapport_de_presentation_3_RGPH.pdf. Accessed 20 May 2010.
  • [3]Keiser J, Castro MC, Maltese MF, Bos R, Tanner M, Singer BH et al.. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg. 2005; 72:392-406.
  • [4]Carnevale P, Guillet P, Robert V, Fontenille D, Doannio J, Coosemans M et al.. Diversity of malaria in rice growing areas of the Afrotropical region. Parasitologia. 1999; 41:273-6.
  • [5]Dossou-Yovo J, Ouattara A, Doannio JMC, Rivière F, Chauvancy G, Meunier JY. Aspects du paludisme dans une localité de savane humide de Côte d’Ivoire. Med Trop. 1994; 54:331-6.
  • [6]Dossou-Yovo J, Doannio JMC, Diarrassouba S, Chauvancy G. Impact d’aménagements de rizières sur la transmission du paludisme dans la ville de Bouaké, Côte d’Ivoire. Bull Soc Pathol Exot. 1998; 91:327-33.
  • [7]Gratz NG. The impact of rice production on vector-borne disease problems in developing countries. In vector-borne disease control in humans through rice agroecosystem management. International Rice Research Institute, Manila, Philippines; 1988.
  • [8]Robert V, Petrarca V, Coluzzi M, Boudin L, Carnevale P. Étude des taux de parturité et d'infection du complexe Anopheles gambiae dans la rizière de la Vallée du Kou, Burkina Faso. Le paludisme en Afrique de l'Ouest. Etudes entomologiques et épidémiologiques en zone rizicole et en milieu urbain. Office de la Recherche Scientifique et Technique d’Outre-Mer, Paris; 1991.
  • [9]Loung JF, Laclavère G. Atlas de la République Unie du Cameroun. Editions Jeune Afrique, Paris; 1979.
  • [10]Edwards FW. Clé des Culicinae adultes de la région éthiopienne. ORSTOM, Paris; 1941.
  • [11]Gillies MT, De Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian zoogeographical region). 2nd ed. Publication of the South African institute for Medical Research, Johannesburg; 1968.
  • [12]Gillies MT, Coetzee M. Supplement to the Anophelinae of Africa South of the Sahara. Publication no. 55. South African Institute of Medical Research, Johannesburg, South Africa; 1987.
  • [13]Burkot T, Williams J, Schneider I. Identification of Plasmodium falciparum infected mosquitoes by double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984; 33:783-8.
  • [14]Wirtz R, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I et al.. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoïtes for ELISA development. Bull World Health Organ. 1987; 65:39-45.
  • [15]Fanello C, Santolamazza F, Della Torre A. Simultaneous identification of species and molecular forms of Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002; 16:461-4.
  • [16]Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Amer J Trop Med Hygiene. 2003; 69:200-5.
  • [17]Kengne P, Awono-Ambene P, Antonio-Nkondjio C, Simard F, Fontenille D. Molecular identification of the Anopheles nili group of African malaria vectors. Med Vet Entomo. 2003; 17:67-74.
  • [18]Kengne P, Antonio-Nkondjio C, Awono-Ambene H, Simard F, Awolola T, Fontenille D. Molecular differentiation of three closely related members of the mosquito species complex Anopheles moucheti, by mitochondrial and ribosomal DNA polymorphism. Med Vet Entomol. 2007; 21:177-82.
  • [19]Coz J. Contribution à l’étude du complexe Anopheles gambiae. Répartition géographique et saisonnière en Afrique de l’Ouest. Cahier ORSTOM, Service Entomologie Médicale et Parasitologie 1973;11:3–31.
  • [20]De Meillon B. Aspect of malaria vector research in Africa. Bull Org Mond Santé. 1956; 15:847-51.
  • [21]Fontenille D, Cohuet A, Awono-Ambeme P, Antonio-Nkondjio C, Wondji C, Kengne P et al.. Systématique et Biologie des anophèles vecteurs de plasmodiums en Afrique, Données récentes. Méd Trop. 2003; 63:247-53.
  • [22]Le Goff G, Toto JC, Nzeyimana I, Gouagna LC, Robert V. Les moustiques et la transmission du paludisme dans un village traditionnel du bloc forestier Sud-camerounais. Bull Liais Doc OCEAC. 1993; 26:133-6.
  • [23]Afrane Y, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004; 89:125-34.
  • [24]Dongus S, Nyika D, Kannady K, Mtasiwa D, Mshinda H, Gosoniu L et al.. Urban agriculture and anopheles habitats in Dar Es Salaam, Tanzania. Geospat Health. 2009; 3:189-210.
  • [25]Klinkenberg E, McCall PJ, Wilson MD, Amerasinghe FP, Donnelly MJ. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar J. 2008; 7:151. BioMed Central Full Text
  • [26]Rageau J, Adam JP. Culicinae du Cameroun. Ann Parasit hum comp. 1952;27:610–35.
  • [27]Hamon J, Adam P, Grjebine A. Les Anophèles de l’ouest de l’Afrique. Bull Org Mond Santé. 1956; 15:565-72.
  • [28]Paaijmans KP, Imbahale SS, Thomas BT, Willem T. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010; 9:196. BioMed Central Full Text
  • [29]Darriet F, Rossignol M, Chandre F. The combination of NPK fertilizer and deltamethrin insecticide favors the proliferation of pyrethroid-resistant Anopheles gambiae (DIPTERA: CULICIDAE). Parasite. 2012; 19:159-64.
  • [30]Muturi EJ, Mwangangi J, Shililu J, Jacob BG, Mbogo C, Githure J et al.. Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. J Vector Ecol. 2008; 33(1):56-63.
  • [31]Prassad H, Prasad RN, Haq S. Control of mosquito breeding through Gambusia affinis in rice fields. Indian J Malariol. 1993; 30:57-65.
  • [32]Knight TM, Chase JM, Goss CW, Knight JJ. Effects of interspecific competition, predation and their survival and development time of immature Anopheles quadrimaculatus. J Vector Ecol. 2004; 29(2):277-84.
  • [33]Njan Nloga A, Robert V, Toto JC, Carnevale P. Anopheles moucheti vecteur principal du paludisme au sud Cameroun. Bull Liais Doc OCEAC. 1993; 26:63-7.
  • [34]Adam JP. Note faunistique et biologique sur les Anopheles de la région de Yaoundé et la transmission du paludisme en zone forestière du sud Cameroun. Bull Soc Pathol Exot. 1956; 49:210-20.
  • [35]Carnevale P, Le Goff G, Toto JC, Robert V. Anopheles nili as the main malaria vector of human malaria in village of southern Cameroun. Med Vet Entomol. 1992; 6:135-8.
  • [36]Languillon J, Mouchet J, Rivola E, Rageau J. Contribution à l’étude de l’épidémiologie du paludisme dans la région forestière du Cameroun. Paludométrie, espèces plasmodiales, anophélisme, transmission. Med Trop. 1956; 16:347-78.
  • [37]Akono NP, Tonga C, Kekeunou S, Lehman LG. Mosquito species diversity and malaria transmission in Ayos, an area of degraded forest targeted for universal LLIN distribution in southern Cameroon. African Entomol. 2014; 22:602-10.
  文献评价指标  
  下载次数:94次 浏览次数:7次