期刊论文详细信息
Orphanet Journal of Rare Diseases
Thiamine transporter-2 deficiency: outcome and treatment monitoring
Belén Pérez-Dueñas1  Pilar Rodríguez-Pombo1  Rafael Artuch1  Jordi Muchart3  Mónica Rebollo3  Alfonso Oyarzabal1  Marta Molero1  Mercedes Serrano1  Juan Darío Ortigoza-Escobar2 
[1] Center for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain;Department of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Passeig Sant Joan de Déu, 2, Esplugues, Barcelona 08950, Spain;Department of Neuroradiology, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
关键词: Dystonia;    Striatal necrosis;    Biotin;    Thiamine;    Lactic acidosis;    Leigh syndrome;    SLC19A3;    Biotin responsive basal ganglia disease;    Thiamine transporter 2 deficiency;   
Others  :  861502
DOI  :  10.1186/1750-1172-9-92
 received in 2014-04-08, accepted in 2014-06-13,  发布年份 2014
【 摘 要 】

Background

The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse.

Methods

We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature.

Results

At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring.

Conclusions

ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients.

【 授权许可】

   
2014 Ortigoza-Escobar et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 6. 27KB Image download
59KB Image download
12KB Image download
90KB Image download
68KB Image download
【 图 表 】

Figure 6.

【 参考文献 】
  • [1]Marco E, Anderson J, Neilson D, Strober J: Acute necrotizing encephalopathy in 3 brothers. Pediatrics 2010, 125:e693-e698.
  • [2]Lal D, Becker K, Motameny S, Altmüller J, Thiele H, Nürnberg P, Ahting U, Rolinski B, Neubauer BA, Hahn A: Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 2013, 14:85-87.
  • [3]Tzoulis C, Vedeler C, Haugen M, Storstein A, Tran GT, Gjerde IO, Biermann M, Schwarzlmüller T, Bindoff LA: Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurol 2013, 13:55.
  • [4]La Piana R, Uggetti C, Olivieri I, Tonduti D, Balottin U, Fazzi E, Orcesi S: Bilateral striatal necrosis in two subjects with aicardi-goutières syndrome due to mutations in ADAR1 (AGS6). Am J Med Genet A 2014, 164:815-892.
  • [5]Pérez-Dueñas B, De La Osa A, Capdevila A, Navarro-Sastre A, Leist A, Ribes A, García-Cazorla A, Serrano M, Pineda M, Campistol J: Brain injury in glutaric aciduria type I: the value of functional techniques in magnetic resonance imaging. Eur J Paediatr Neurol 2009, 13:534-540.
  • [6]Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, Al Watban J, Al-Kawi MZ, Dabbagh O: Biotin-responsive basal ganglia disease: a novel entity. Brain 1998, 121:1267-1279.
  • [7]Zeng WQ, Al-Yamani E, Acierno JS Jr, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF: Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 2005, 77:16-26.
  • [8]Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H: Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med 2009, 360:1792-1794.
  • [9]Yamada K, Miura K, Hara K, Suzuki M, Nakanishi K, Kumagai T, Ishihara N, Yamada Y, Kuwano R, Tsuji S, Wakamatsu N: A wide spectrum of clinical and brain MRI findings in SLC19A3 mutations. BMC MedGenet 2010, 11:171.
  • [10]Debs R, Depienne C, Rastetter A, Bellanger A, Degos B, Galanaud D, Keren B, Lyon-Caen O, Brice A, Sedel F: Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol 2010, 67:126-130.
  • [11]Serrano M, Rebollo M, Depienne C, Rastetter A, Fernández-Álvarez E, Muchart J, Martorell L, Artuch R, Obeso JA, Pérez-Dueñas B: Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency. MovDisord 2012, 27:1295-1298.
  • [12]Kevelam S, Bugiani M, Salomons G, Feigenbaum A, Blaser S, Prasad C, Häberle J, Baric I, Bakker IM, Postma NL, Kanhai WA, Wolf NI, Abbink TE, Waisfisz Q, Heutink P, van der Knaap MS: Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 2013, 136:1534-1543.
  • [13]Gerards M, Kamps R, van Oevelen J, Boesten I, Jongen E, de Koning B, Scholte HR, de Angst I, Schoonderwoerd K, Sefiani A, Ratbi I, Coppieters W, Karim L, de Coo R, van den Bosch B, Smeets H: Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early childhood fatal Leigh syndrome. Brain 2013, 136:882-890.
  • [14]Tabarki B, Al-Shafi S, Al-Shahwan S, Azmat Z, Al-Hashem A, Al-Adwani N, Biary N, Al-Zawahmah M, Khan S, Zuccoli G: Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology 2013, 80:261-267.
  • [15]Alfadhel M, Almuntashri M, Jadah R, Bashiri FA, Al Rifai MT, Al Shalaan H, Al Balwi M, Al Rumayan A, Eyaid W, Al-Twaijri W: Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 2013, 8:83.
  • [16]Fassone E, Wedatilake Y, Devile CJ, Chong WK, Carr LJ, Rahman S: Treatable Leigh-like encephalopathy presenting in adolescence. BMJ Case Rep 2013, 2013:200838.
  • [17]Distelmaier F, Huppke P, Pieperhoff P, Amunts K, Schaper J, Morava E, Mayatepek E, Kohlhase J, Karenfort M: Biotin-responsive basal ganglia disease: a treatable differential diagnosis of leigh syndrome. JIMD Rep 2013. Epub ahead of print
  • [18]Tabarki B, Al-Hashem A, Alfadhel M: Biotin-Thiamine-Responsive Basal Ganglia Disease. In GeneReviews™ [Internet]. Edited by Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K. Seattle (WA): University of Washington, Seattle; 2013:1993-2013.
  • [19]Pérez-Dueñas B, Serrano M, Rebollo M, Muchart J, Gargallo E, Dupuits C, Artuch R: Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics 2013, 131:e1670-e1675.
  • [20]Schänzer A, Döring B, Ondrouschek M, Goos S, Garvalov BK, Geyer J, Acker T, Neubauer B, Hahn A: Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease. Brain Pathol 2014, 24:270-279.
  • [21]Moyano D, Vilaseca MA, Artuch R, Lambruschini N: Plasma amino acids in anorexia nervosa. Eur J Clin Nutr 1998, 52:684-689.
  • [22]Blau N, Duran M, Gibson K: Laboratory guide to the methods in biochemical genetics. Edited by Blau N, Duran M, Gibson K. Berlin, Heidelberg, New York: Springer; 2008:137-169.
  • [23]Mayr JA, Freisinger P, Schlachter K, Rolinski B, Zimmermann FA, Scheffner T, Haack TB, Koch J, Ahting U, Prokisch H, Sperl W: Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet 2011, 89:806-812.
  • [24]García-Cazorla A, Oyarzabal A, Fort J, Robles C, Castejón E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, Palacín M, Rodríguez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-Llitjós M, Vilaseca MA, Ormaizabal A, Pristoupilova A, Agulló SB: Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 2014, 35(4):470-477.
  • [25]Chan SY, Loscalzo J: The emerging paradigm of network medicine in the study of human disease. Circ Res 2012, 111:359-374.
  • [26]Lehner B: Modelling genotype-phenotype relationships and human disease with genetic interaction networks. J Exp Biol 2007, 210:1559-1566.
  • [27]Körner RW, Vierzig A, Roth B, Müller C: Determination of thiamin diphosphate in whole blood samples by high-performance liquid chromatography–a method suitable for pediatric diagnostics. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877:1882-1886.
  • [28]Thyagarajan D, Shanske S, Vazquez-Memije M, De Vivo D, DiMauro S: A novel mitochondrial ATPase 6 point mutation in familial bilateral striatal necrosis. Ann Neuro 1995, 38:468-472.
  • [29]Giribaldi G, Doria-Lamba L, Biancheri R, Severino M, Rossi A, Santorelli FM, Schiaffino C, Caruso U, Piemonte F, Bruno C: Intermittent-relapsing pyruvate dehydrogenase complex deficiency: a case with clinical, biochemical, and neuroradiological reversibility. Dev Med Child Neurol 2012, 54:472-476.
  • [30]Lebre AS, Rio M, Faivre d’Arcier L, Vernerey D, Landrieu P, Slama A, Jardel C, Laforêt P, Rodriguez D, Dorison N, Galanaud D, Chabrol B, Paquis-Flucklinger V, Grévent D, Edvardson S, Steffann J, Funalot B, Villeneuve N, Valayannopoulos V, de Lonlay P, Desguerre I, Brunelle F, Bonnefont JP, Rötig A, Munnich A, Boddaert N: A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet 2011, 48:16-23.
  • [31]Parikh S1, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Mitochondrial Medicine Society Clinical Directors Working Group: Practice patterns of mitochondrial disease physicians in North America: part 2: treatment, care and management. Mitochondrion 2013, 13:681-687.
  文献评价指标  
  下载次数:4次 浏览次数:2次