期刊论文详细信息
Particle and Fibre Toxicology
Extracellular Onchocerca-derived small RNAs in host nodules and blood
Amy H Buck7  Achim Hoerauf1  David W Taylor5  Vincent N Tanya6  Germanus S Bah4  Henrietta F Ngangyung4  Samuel Wanji3  Alexander Debrah8  Mark Blaxter7  Kenneth M Pfarr1  Alasdair Ivens7  Simon A Babayan2  Benjamin L Makepeace9  Juan F Quintana7 
[1] Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany;Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK;Research Foundation in Tropical Diseases and Environment and University of Buea, Buea, Cameroon;Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, Ngaoundéré, Cameroon;Division of Pathway Medicine, School for Biomedical Sciences, University of Edinburgh, Little France, Edinburgh, UK;Cameroon Academy of Sciences, Yaoundé, Cameroon;Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh, UK;Kumasi Centre for Collaborative Research (KCCR) and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana;Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
关键词: Host-pathogen;    Onchocerciasis;    Filarial nematode;    Extracellular RNA;    microRNAs;   
Others  :  1147322
DOI  :  10.1186/s13071-015-0656-1
 received in 2014-12-05, accepted in 2015-01-12,  发布年份 2015
PDF
【 摘 要 】

Background

microRNAs (miRNAs), a class of short, non-coding RNA can be found in a highly stable, cell-free form in mammalian body fluids. Specific miRNAs are secreted by parasitic nematodes in exosomes and have been detected in the serum of murine and dog hosts infected with the filarial nematodes Litomosoides sigmodontis and Dirofilaria immitis, respectively. Here we identify extracellular, parasite-derived small RNAs associated with Onchocerca species infecting cattle and humans.

Methods

Small RNA libraries were prepared from total RNA extracted from the nodule fluid of cattle infected with Onchocerca ochengi as well as serum and plasma from humans infected with Onchocerca volvulus in Cameroon and Ghana. Parasite-derived miRNAs were identified based on the criteria that sequences unambiguously map to hairpin structures in Onchocerca genomes, do not align to the human genome and are not present in European control serum.

Results

A total of 62 mature miRNAs from 52 distinct pre-miRNA candidates were identified in nodule fluid from cattle infected with O. ochengi of which 59 are identical in the genome of the human parasite O. volvulus. Six of the extracellular miRNAs were also identified in sequencing analyses of serum and plasma from humans infected with O. volvulus. Based on sequencing analysis the abundance levels of the parasite miRNAs in serum or plasma range from 5 to 127 reads/per million total host miRNA reads identified, comparable to our previous analyses of Schistosoma mansoni and L. sigmodontis miRNAs in serum. All six of the O. volvulus miRNAs identified have orthologs in other filarial nematodes and four were identified in the serum of mice infected with L. sigmodontis.

Conclusions

We have identified parasite-derived miRNAs associated with onchocerciasis in cattle and humans. Our results confirm the conserved nature of RNA secretion by diverse nematodes. Additional species-specific small RNAs from O. volvulus may be present in serum based on the novel miRNA sequences identified in the nodule fluid. In our analyses comparison to European control serum illuminates the scope for false-positives, warranting caution in criteria that should be applied to identification of biomarkers of infection.

【 授权许可】

   
2015 Quintana et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403233810837.pdf 1722KB PDF download
Figure 4. 95KB Image download
Figure 3. 35KB Image download
Figure 2. 48KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012; 19:586-93.
  • [2]Devaney E, Winter AD, Britton C. microRNAs: a role in drug resistance in parasitic nematodes? Trends Parasitol. 2010; 26:428-33.
  • [3]Turchinovich A, Samatov TR, Tonevitsky AG, Burwinkel B. Circulating miRNAs: cell-cell communication function? Front Genet. 2013; 4(June):119.
  • [4]Hoy AM, Lundie RJ, Ivens A, Quintana JF, Nausch N, Forster T et al.. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Negl Trop Dis. 2014; 8:e2701.
  • [5]Tritten L, Burkman E, Moorhead A, Satti M, Geary J, Mackenzie C et al.. Detection of circulating parasite-derived MicroRNAs in filarial infections. PLoS Negl Trop Dis. 2014; 8:e2971.
  • [6]Cheng G, Luo R, Hu C, Cao J, Jin Y. Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum. Parasitology. 2013; 140:1751-61.
  • [7]Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg M et al.. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics. 2014; 105:232-41.
  • [8]Gobert GN, Stenzel DJ, McManus DP, Jones MK. The ultrastructural architecture of the adult Schistosoma japonicum tegument. Int J Parasitol. 2003; 33:1561-75.
  • [9]Buck AH, Coakley G, Simbari F, Mcsorley H, Quintana J, Le BT et al.. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014; 5:5488.
  • [10]Knopp S, Steinmann P, Hatz C, Keiser J, Utzinger J. Nematode infections: filariases. Infect Dis Clin North Am. 2012; 26(2):359-81.
  • [11]Hotez PJ, Alvarado M, Basáñez M-G, Bolliger I, Bourne R, Boussinesq M et al.. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014; 8:e2865.
  • [12]Morales-Hojas R, Cheke RA, Post RJ. Molecular systematics of five Onchocerca species (Nematoda: Filarioidea) including the human parasite, O. volvulus, suggest sympatric speciation. J Helminthol. 2006; 80:281-90.
  • [13]Crump A, Morel CM, Omura S. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol. 2012; 28:280-8.
  • [14]Nfon CK, Makepeace BL, Njongmeta LM, Tanya VN, Bain O, Trees AJ. Eosinophils contribute to killing of adult Onchocerca ochengi within onchocercomata following elimination of Wolbachia. Microbes Infect. 2006; 8:2698-705.
  • [15]Wahl G, Enyong P, Ngosso A, Schibel JM, Moyou R, Tubbesing H et al.. Onchocerca ochengi: epidemiological evidence of cross-protection against Onchocerca volvulus in man. Parasitology. 1998; 116(Pt 4):349-62.
  • [16]Osei-Atweneboana MY, Eng JKL, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007; 369:2021-9.
  • [17]Gardon J, Gardon-Wendel N, Demanga-Ngangue, Kamgno J, Chippaux JP, Boussinesq M: Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997; 350:18–22.
  • [18]Boatin BA, Toé L, Alley ES, Nagelkerke NJD, Borsboom G, Habbema JDF. Detection of Onchocerca volvulus infection in low prevalence areas: a comparison of three diagnostic methods. Parasitology. 2002; 125(Pt 6):545-52.
  • [19]Park J, Dickerson TJ, Janda KD. Major sperm protein as a diagnostic antigen for onchocerciasis. Bioorg Med Chem. 2008; 16:7206-9.
  • [20]Weil GJ, Steel C, Liftis F, Li B, Mearns G, Lobos E et al.. A rapid-format antibody card test for diagnosis of onchocerciasis. J Infect Dis. 2000; 186:1796-9.
  • [21]Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Van Lieshout L, Petri WA et al.. High throughput multiplex PCR and probe-based detection with luminex beads for seven intestinal parasites. Am J Trop Med Hyg. 2011; 84:332-7.
  • [22]Srivastava P, Mehrotra S, Tiwary P, Chakravarty J, Sundar S. Diagnosis of Indian visceral leishmaniasis by nucleic acid detection using PCR. PLoS One. 2011; 6:4-8.
  • [23]Hoy AM, Buck AH. Extracellular small RNAs: what, where, why? Biochem Soc Trans. 2012; 40:886-90.
  • [24]Wahl G, Achu-Kwi MD, Mbah D, Dawa O, Renz A. Bovine onchocerciasis in North Cameroon. Vet Parasitol. 1994; 52:297-311.
  • [25]Arndts K, Specht S, Debrah AY, Tamarozzi F, Klarmann Schulz U, Mand S et al.. Immunoepidemiological profiling of onchocerciasis patients reveals associations with microfilaria loads and ivermectin intake on both individual and community levels. PLoS Negl Trop Dis. 2014; 8:e2679.
  • [26]Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A et al.. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA. 2013; 19:712-22.
  • [27]Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics Act. 2011; 17:10-2.
  • [28]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25. BioMed Central Full Text
  • [29]Griffiths-Jones S. Rfam: an RNA family database. Nucleic Acids Res. 2003; 31:439-41.
  • [30]Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40:37-52.
  • [31]Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014; 42(Database issue):D68-73.
  • [32]Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008; 36(Web Server issue):W70-4.
  • [33]Altschul SF, Gish W, Miller W, Myers EW, Lipman D. Basic Local Alignment Search Tool.pdf. J Mol Biol. 1990; 215:403-10.
  • [34]Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, Mote P et al.. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics. 2013; 14:298. BioMed Central Full Text
  • [35]George GH, Palmieri JR, Connor DH. The onchocercal nodule: interrelationship of adult worms and blood vessels. Am J Trop Med Hyg. 1985; 34:1144-8.
  • [36]Zouré HGM, Noma M, Tekle AH, Amazigo UV, Diggle PJ, Giorgi E et al.. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasit Vectors. 2014; 7:326. BioMed Central Full Text
  • [37]Turner HC, Osei-Atweneboana MY, Walker M, Tettevi EJ, Churcher TS, Asiedu O et al.. The cost of annual versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. PLoS Negl Trop Dis. 2013; 7:e2452.
  • [38]Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D et al.. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One. 2012; 7:e51009.
  • [39]Beatty M, Guduric-fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE et al.. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics. 2014; 15:933. BioMed Central Full Text
  • [40]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al.. A mammlian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129:1401-14.
  • [41]Tritten L, Neill MO, Wanji S, Njouendoui A, Fombad F, Kengne-ouaffo J et al.. Loa loa and Onchocerca ochengi miRNAs detected in host circulation. Mol Biochem Parasitol. 2014; 198(1):14-7.
  • [42]Shaw WR, Armisen J, Lehrbach NJ, Miska EA. The conserved miR-51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans. Genetics. 2010; 185:897-905.
  • [43]Brenner JL, Kemp BJ, Abbott AL. The mir-51 family of microRNAs functions in diverse regulatory pathways in Caenorhabditis elegans. PLoS One. 2012; 7:e37185.
  • [44]Van der Werf MJ, de Vlas SJ, Brooker S, Looman CW, Nagelkerke NJ, Habbema JDF et al.. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop. 2003; 86:125-39.
  文献评价指标  
  下载次数:10次 浏览次数:11次