期刊论文详细信息
Molecular Cytogenetics
Assessment of copy number variations in the brain genome of schizophrenia patients
Hiroyuki Nawa3  Ryozo Kuwano6  Akiyoshi Kakita1  Hitoshi Takahashi1  Shin-ichi Niwa1,10  Akinori Miyashita6  Kiyoshi Maeda7  Osamu Shirakawa9  Shuji Iritani5  Noboru Kitamura4  Akitoyo Hishimoto4  Takeshi Hashimoto4  Mizuki Hino1,10  Akira Wada1,10  Junya Matsumoto1,10  Hirooki Yabe1,10  Yasuto Kunii1,10  Kenichi Oshima8  Kazuhiro Niizato8  Masako Shibuya2  Kazuaki Araki3  Toshiyuki Someya2  Yuichiro Watanabe2  Miwako Sakai2 
[1] Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan;Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Niigata, 951-8510, Japan;Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Niigata, 951-8585, Japan;Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Hyogo, Japan;Department of Mental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichi, Japan;Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan;Department of Social Rehabilitation, Kobe University School of Medicine, Hyogo, 654-0142, Japan;Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan;Department of Neuropsychiatry, Kinki University Faculty of Medicine, Osaka-Sayama, 589-8511, Osaka, Japan;Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
关键词: Somatic mutation;    Schizophrenia;    Genome instability;    Caudate;    CNV;   
Others  :  1221595
DOI  :  10.1186/s13039-015-0144-5
 received in 2015-03-09, accepted in 2015-05-12,  发布年份 2015
【 摘 要 】

Background

Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however. In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia.

Results

Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48 each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites. In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These test loci, however, exhibited the same somatic CNV patterns in the other brain region.

Conclusions

The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to be characterized further.

【 授权许可】

   
2015 Sakai et al.

附件列表
Files Size Format View
Figure 4. 70KB Image download
Fig. 3. 56KB Image download
Fig. 2. 47KB Image download
Fig. 1. 30KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Figure 4.

【 参考文献 】
  • [1]Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y et al.. Origins and functional impact of copy number variation in the human genome. Nature. 2010; 464:704-712.
  • [2]Park H, Kim JI, Ju YS, Gokcumen O, Mills RE, Kim S et al.. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet. 2010; 42:400-405.
  • [3]Girirajan S, Campbell CD, Eichle EE. Human copy number variation and complex genetic disease. Ann Rev Genetics. 2011; 45:203-226.
  • [4]Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009; 10:451-481.
  • [5]Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012; 148:1223-1241.
  • [6]Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008; 40:880-885.
  • [7]Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al.. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011; 72:951-963.
  • [8]Rees E, Moskvina V, Owen MJ, O’Donovan MC, Kirov G. De novo rates and selection of schizophrenia-associated copy number variants. Biol Psychiatry. 2011; 70:1109-1114.
  • [9]Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al.. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012; 17:142-153.
  • [10]Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics. 2008; 9:452-465.
  • [11]Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 2010; 705:96-106.
  • [12]Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res. 2013; 139:181-188.
  • [13]Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI et al.. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One. 2007; 2:e558.
  • [14]Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ et al.. Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci. 2003; 23:10454-10462.
  • [15]Piotrowski A, Bruder CE, Andersson R, Diaz de Ståhl T, Menzel U et al.. Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat. 2008; 29:1118-1124.
  • [16]De S. Somatic mosaicism in healthy human tissues. Trends Genet. 2011; 27:217-223.
  • [17]Lindhurst MJ, Parker VE, Payne F, Sapp JC, Rudge S, Harris J et al.. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet. 2012; 44:928-933.
  • [18]Bloom RJ, Kähler AK, Collins AL, Chen G, Cannon TD, Hultman C et al.. Comprehensive analysis of copy number variation in monozygotic twins discordant for bipolar disorder or schizophrenia. Schizophr Res. 2013; 146:289-290.
  • [19]Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS et al.. Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet. 2007; 44:521-525.
  • [20]Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T. Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci. 2007; 27:6859-6867.
  • [21]Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravets VS, Beresheva AK et al.. The schizophrenia brain exhibits low-level aneuploidy involving chromosome. Schizophr Res. 2008; 98:139-147.
  • [22]Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis. 2009; 34:212-220.
  • [23]Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet. 2009; 18:2656-2669.
  • [24]Lee JM, Zhang J, Su AI, Walker JR, Wiltshire T, Kang K et al.. A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst Biol. 2010; 4:29. BioMed Central Full Text
  • [25]Pamphlett R, Morahan JM, Luquin N, Yu B. Looking for differences in copy number between blood and brain in sporadic amyotrophic lateral sclerosis. Muscle Nerve. 2011; 44:492-498.
  • [26]Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener. 2010; 5:60. BioMed Central Full Text
  • [27]Arendt T, Brückner MK, Mosch B, Lösche A. Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol. 2010; 177:15-20.
  • [28]Ye T, Lipska BK, Tao R, Hyde TM, Wang L, Li C et al.. Analysis of copy number variations in brain DNA from patients with schizophrenia and other psychiatric disorders. Biol Psychiatry. 2012; 72:651-654.
  • [29]Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996; 6:639-645.
  • [30]Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet. 2002; 3:579-588.
  • [31]Zhang D, Qian Y, Akula N, Alliey-Rodriguez N, Tang J et al.. Accuracy of CNV detection from GWAS data. PLoS One. 2011; 6:e14511.
  • [32]Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J et al.. Neurogenesis in the striatum of the adult human brain. Cell. 2014; 156:1072-1083.
  • [33]Williams SL, Mash DC, Züchner S, Moraes SC. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013; 9:10.
  • [34]Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC et al.. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009; 460:748-752.
  • [35]Filho AB, Souza J, Faucz FR, Sotomaior VS, Dupont B, Bartel F et al.. Somatic/gonadal mosaicism in a syndromic form of ectrodactyly, including eye abnormalities, documented through array-based comparative genomic hybridization. Am J Med Genet A. 2011; 155A:1152-1156.
  • [36]Etheridge SP, Bowles NE, Arrington CB, Pilcher T, Rope A, Wilde AA et al.. Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A. 2011; 155A:2578-2583.
  • [37]Terracciano A, Specchio N, Darra F, Sferra A, Bernardina BD, Vigevano F et al.. Somatic mosaicism of PCDH19 mutation in a family with low-penetrance EFMR. Neurogenetics. 2012; 13:341-345.
  • [38]Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T et al.. Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron. 2014; 81:306-313.
  • [39]Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci. 2010; 33:345-354.
  • [40]Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S et al.. Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci. 2012; 32:16213-16222.
  • [41]Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY. Multicolor fluorescent in situ hybridization on postmortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev. 2001; 23:S186-S190.
  • [42]Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K et al.. The human genome puzzle - the role of copy number variation in somatic mosaicism. Curr Genomics. 2010; 11:426-431.
  • [43]Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics. 2012; 13:477-488.
  • [44]Xu H, Poh WT, Sim X, Ong RT, Suo C, Tay WT et al.. SgD-CNV, a database for common and rare copy number variants in three Asian populations. Hum Mutat. 2011; 32:1341-1349.
  • [45]Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al.. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014; 506:185-190.
  • [46]Priebe L, Degenhardt FA, Herms S, Haenisch B, Mattheisen M, Nieratschker V et al.. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry. 2012; 17:421-432.
  • [47]Krumm N, O’Roak BJ, Karakoc E, Mohajeri K, Nelson B, Vives L et al.. Transmission disequilibrium of small CNVs in simplex autism. Am J Hum Genet. 2013; 93:595-606.
  • [48]Lencz T, Guha S, Liu C, Rosenfeld J, Mukherjee S, DeRosse P et al.. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun. 2013; 4:2739.
  • [49]Francey LJ, Conlin LK, Kadesch HE, Clark D, Berrodin D, Sun Y et al.. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012; 158A:298-308.
  • [50]Pidsley R, Viana J, Hannon E, Spiers HH, Troakes C, Al-Saraj S et al.. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014; 15:483. BioMed Central Full Text
  • [51]Huang KC, Yang KC, Lin H, Tsao Tsun-Hui T, Lee WK, Lee SA et al.. Analysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system. BMC Genomics. 2013; 14 Suppl 5:S10. BioMed Central Full Text
  • [52]Shanmuganathan A, Black MB. Researchgate. 2014. http://www. researchgate.net/post/What_is_the_fold_change_value_correlation_between_microarray_and_qPCR_experiments webcite
  • [53]Tsubahara M, Hayashi Y, Niijima S, Yamamoto M, Kamijo T, Murata Y et al.. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene. Clin Endocrinol (Oxf). 2012; 76:420-424.
  • [54]Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA et al.. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012; 90:1108-1115.
  • [55]Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L et al.. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature. 2012; 492:438-442.
  • [56]Whale AS, Huggett JF, Cowen S, Zhang Y, Haney MS, Tomasini L et al.. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 2012; 40:e82.
  • [57]Watanabe Y, Nunokawa A, Kaneko N, Someya T. A case–control study and meta-analysis of association between a common copy number variation of the glutathione S-transferase mu 1 (GSTM1) gene and schizophrenia. Schizophr Res. 2010; 124:236-237.
  文献评价指标  
  下载次数:3次 浏览次数:7次