Particle and Fibre Toxicology | |
Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine | |
Jason K Blackburn3  Gregory Glass2  Douglas Goodin5  Nataliya Vydayko1  Ian T Kracalik3  Jake Hightower4  | |
[1] Central Sanitary Epidemiological Station, Kyiv, Ukraine;Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA;Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA;Department of Geography, Spatial Epidemiology & Ecology Research Laboratory, University of Florida, Gainesville, FL, USA;Department of Geography, Kansas State University, Manhattan, KS, USA | |
关键词: Francisella tularensis; Land cover; Ukraine; Spatial clusters; SaTScan; Tularemia; | |
Others : 1149747 DOI : 10.1186/s13071-014-0453-2 |
|
received in 2014-05-28, accepted in 2014-09-20, 发布年份 2014 | |
【 摘 要 】
Background
Francisella tularensis, the causative agent of tularemia, is a zoonotic agent that remains across much of the northern hemisphere, where it exists in enzootic cycles. In Ukraine, tularemia has a long history that suggests a need for sustained surveillance in natural foci. To better characterize the host-vector diversity and spatial distribution of tularemia, we analyzed historical data from field collections carried out from 1941 to 2008.
Findings
We analyzed the spatial-temporal distribution of bacterial isolates collected from field samples. Isolates were characterized by source and dominant land cover type. To identify environmental persistence and spatial variation in the source of isolation, we used the space-time permutation and multinomial models in SaTScan. A total of 3,086 positive isolates were taken from 1,084 geographic locations. Isolation of F. tularensis was more frequent among arthropods [n?=?2,045 (66.3%)] followed by mammals [n?=?619 (20.1%)], water [n?=?393 (12.7%)], and farm produce [n?=?29 (0.94%)], respectively. Four areas of persistent bacterial isolation were identified. Water and farm produce as sources of bacterial isolation were clustered.
Conclusions
Our findings confirm the presence of long-standing natural foci of F. tularensis in Ukraine. Given the history of tularemia as well as its environmental persistence there exists a possibility of (re)emergence in human populations. Heterogeneity in the distribution of tularemia isolate recovery related to land cover type supports the theory of natural nidality and clusters identify areas to target potential sources of the pathogen and improve surveillance.
【 授权许可】
2014 Hightower et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405095832288.pdf | 1538KB | download | |
Figure 3. | 141KB | Image | download |
Figure 2. | 56KB | Image | download |
Figure 1. | 163KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Staples JE, Kubota KA, Chalcraft LG, Mead PS, Petersen JM: Epidemiologic and molecular analysis of human tularemia, United States, 1964¿2004. Emerg Infect Dis 2006, 12(7):1113-1118.
- [2]Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E, Byström M, Fox J, Chu M, Forsman M, Sjöstedt A: Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol 2004, 186(17):5808-5818.
- [3]Charette JD: CDC Category explanation (A, B, C) overview. Toxico-Terrorism: emergency response and clinical approach to chemical, biological, and radiological agents 2007, 755:329.
- [4]Sjöstedt A: Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 2007, 1105(1):1-29.
- [5]Pollitzer R: A Review of selected problems of tularemia in the soviet union. Part Ii/A. Vaccines and Vaccination. In New York, NY: Fordham University; 1963.
- [6]Reintjes R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B, Lieftucht A, D¿Ancona F, Dennis DT, Kosoy MA, Mulliqi-Osmani G: Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg Infect Dis 2002, 8(1):69.
- [7]Anda P, Del Pozo JS, Garcia JD, Escudero R, Pena FG, Velasco ML, Sellek RE, Chillarón MJ, Serrano LS, Navarro JM: Waterborne outbreak of tularemia associated with crayfish fishing. Emerg Infect Dis 2001, 7(3 Suppl):575.
- [8]Kantardjiev T, Ivanov I, Velinov T, Padeshki P, Popov B, Nenova R, Mincheff M: Tularemia outbreak, Bulgaria, 1997¿2005. Emerg Infect Dis 2006, 12(4):678.
- [9]Chitadze N, Kuchuloria T, Clark D, Tsertsvadze E, Chokheli M, Tsertsvadze N, Trapaidze N, Lane A, Bakanidze L, Tsanava S: Water-borne outbreak of oropharyngeal and glandular tularemia in Georgia: investigation and follow-up. Infection 2009, 37(6):514-521.
- [10]?erný Z: Changes of the epidemiology and the clinical picture of tularemia in Southern Moravia (the Czech Republic) during the period 1936¿1999. Eur J Epidemiol 2001, 17(7):637-642.
- [11]Golkovski? G, Mitsevich G, Kha?tovich A, Alekseev E, Korchevski? P: Natural focus of tularemia on the Kerchen peninsula (Crimea).Zh Mikrobiol Epidemiol Immunobiol 1981, ?(10):99¿101.
- [12]Kracalik I, Abdullayev R, Asadov K, Ismayilova R, Baghirova M, Ustun N, Shikhiyev M, Talibzade A, Blackburn JK: Changing patterns of human anthrax in azerbaijan during the post-soviet and preemptive livestock vaccination eras. PLoS Negl Trop Dis 2014, 8(7):e2985.
- [13]Kracalik I, Lukhnova L, Aikimbayev A, Pazilov Y, Temiralyeva G, Blackburn JK: Incorporating retrospective clustering into a prospective cusum methodology for anthrax: Evaluating the effects of disease expectation. Spat Spatiotemporal Epidemiol 2011, 2(1):11-21.
- [14]Kracalik IT, Malania L, Tsertsvadze N, Manvelyan J, Bakanidze L, Imnadze P, Tsanava S, Blackburn JK: Evidence of local persistence of human anthrax in the country of Georgia associated with environmental and anthropogenic factors. PLoS Negl Trop Dis 2013, 7(9):e2388.
- [15]Morris LR, Blackburn JK, Talibzade A, Kracalik I, Ismaylova R, Abdullahyev R: Informing surveillance for the lowland plague focus in Azerbaijan using a historic dataset. Appl Geogr 2013, 45:269-279.
- [16]WHO: World Health Organization Guidelines on Tularemia. In Geneva: World Health Organization; 2007:125.
- [17]Arino O, Bicheron P, Achard F, Latham J, Witt R, Weber JL: GlobCover: the most detailed picture of earth. ESA Bulletin-European Space Agency 2008, 136:24-31.
- [18]Kulldorff M: SaTScan user guide for version 9.0. In 2011.
- [19]Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F: A space¿time permutation scan statistic for disease outbreak detection. PLoS Med 2005, 2(3):e59.
- [20]Pollitzer R: History and incidence of tularemia in the Soviet Union: a review. In New York, NY: Institute of Contemporary Russian Studies, Fordham University Bronx; 1967.
- [21]Pavlovsky EN, Plous FK Jr, Levine ND: Natural nidality of transmissible diseases. Am J Med Sci 1966, 252(5):161.
- [22]Ostfeld RS, Glass GE, Keesing F: Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 2005, 20(6):328-336.
- [23]Olsuf'ev N, Rudnev G: Tularemia. In Washington D.C: Joint Publications Research Services; 1962. "Translated into English".
- [24]Akal?n H, Helvac? S, Gediko?lu S: Re-emergence of tularemia in Turkey. Int J Infect Dis 2009, 13(5):547-551.
- [25]Stupnitskaya V, Marinov M, Litvinenko E, Slesarenko V, Slesarenko A: Natural tularemia foci on the territory of the Ukrainian SSR. In Fort Detrick, MD: Defense Technical Information Center; 1965.
- [26]Svensson K, Bäck E, Eliasson H, Berglund L, Granberg M, Karlsson L, Larsson P, Forsman M, Johansson A: Landscape epidemiology of tularemia outbreaks in Sweden. Emerg Infect Dis 2009, 15(12):1937-1947.
- [27]Clark DV, Ismailov A, Seyidova E, Hajiyeva A, Bakhishova S, Hajiyev H, Nuriyev T, Piraliyev S, Bagirov S, Aslanova A: Seroprevalence of tularemia in rural Azerbaijan. Vector Borne Zoonotic Dis 2012, 12(7):558-563.
- [28]Goldewijk KK: Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cy 2001, 15(2):417-433.