期刊论文详细信息
World Journal of Surgical Oncology
Markers of small cell lung cancer
SK Sharma1  Tarvinder K Taneja1 
[1] Division of Pulmonary and Critical Care Medicine; Department of Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
关键词: apoptosis;    stem cell factor;    telomerase;    kinases;    tumor markers;    non-small cell lung carcinoma;    small cell lung carcinoma;   
Others  :  1207481
DOI  :  10.1186/1477-7819-2-10
 received in 2004-03-29, accepted in 2004-05-05,  发布年份 2004
PDF
【 摘 要 】

Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.

【 授权许可】

   
2004 Taneja and Sharma; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

【 预 览 】
附件列表
Files Size Format View
20150528121930959.pdf 250KB PDF download
【 参考文献 】
  • [1]Travis WD, Colby TV, Corrin B, Shimosato Y, Brambilla E: World Health Organization. Histological typing of lung and pleural tumors. International histological classification of tumors. Third edition. Berlin, Springer Verlag; 1999.
  • [2]Chute JP, Chen T, Feigal E, Simon R, Johnson BE: Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: perceptive progress. J Clin Oncol 1999, 17:1794-1801.
  • [3]Pujol JL, Quantin X, Jacot W, Boher JM, Grenier J, Lamy PJ: Neuroendocrine and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer 2003, 39:131-138.
  • [4]Giovanella L, Ceriani L, Bandera M, Garancini S: Immunoradiometric assay of chromogranin A in the diagnosis of small cell lung cancer. Comparative evaluation with neuron-specific enolase. Int J Biol Markers 2001, 16:50-55.
  • [5]Kasprzak A, Przewozna M, Surdyk-Zasada J, Zabel M: The expression of selected neuroendocrine markers and of anti-neoplastic cytokines (IL-2 and IL-12) in lung cancers. Folia Morphol (Warsz) 2003, 62:497-499.
  • [6]Sunday ME, Choi N, Spindel ER, Chin WW, Mark EJ: Gastrin-releasing peptide gene expression in small cell and large cell undifferentiated lung carcinomas. Hum Pathol 1991, 22:1030-1039.
  • [7]Miyake Y, Kodama T, Yamaguchi K: Pro-gastrin-releasing peptide (31–98) is a specific tumor marker in patients with small cell lung carcinoma. Cancer Res 1994, 54:2136-2140.
  • [8]Aoyagi K, Miyake Y, Urakami K, Kashiwakuma T, Hasegawa A, Kodama T, Yamaguchi K: Enzyme immunoassay of immunoreactive progastrin-releasing peptide (31–98) as tumor marker for small-cell lung carcinoma: development and evaluation. Clin Chem 1995, 41:537-543.
  • [9]Yamaguchi K, Aoyagi K, Urakami K, Fukutani T, Maki N, Yamamoto S, Otsubo K, Miyake Y, Kodama T: Enzyme-linked immunosorbent assay of pro-gastrin-releasing peptide for small cell lung cancer patients in comparison with neuron-specific enolase measurement. Jpn J Cancer Res 1995, 86:698-705.
  • [10]Uchida K, Kojima A, Morokawa N, Tanabe O, Anzai C, Kawakami M, Eto Y, Yoshimura K: Expression of progastrin-releasing peptide and gastrin-releasing peptide receptor mRNA transcripts in tumor cells of patients with small cell lung cancer. J Cancer Res Clin Oncol 2002, 128:633-640.
  • [11]Lacroix J, Becker HD, Woerner SM, Rittgen W, Drings P, von Knebel Doeberitz M: Sensitive detection of rare cancer cells in sputum and peripheral blood samples of patients with lung cancer by preproGRP-specific RT-PCR. Int J Cancer 2001, 92:1-8.
  • [12]Krueger P, Nitz C, Foster R, MacDonald C, Gelber O, Lalehzadeh G, Goodson R, Winter J, Gelber C: A new small cell lung cancer (SCLC)-specific marker discovered through antigenic subtraction of neuroblastoma cells. Cancer Immunol Immunother 2003, 52:367-377.
  • [13]Beau-Faller M, Gaub MP, Schneider A, Ducrocq X, Massard G, Gasser B, Chenard MP, Kessler R, Anker P, Stroun M, Weitzenblum E, Pauli G, Wihlm JM, Quoix E, Oudet P: Plasma DNA microsatellite panel as sensitive and tumor-specific marker in lung cancer patients. Int J Cancer 2003, 105:361-370.
  • [14]Chen XQ, Stroun M, Magnenat JL, Nicod LP, Kurt AM, Lyautey J, Lederrey C, Anker P: Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med 1996, 2:1033-1035.
  • [15]Gonzalez R, Silva JM, Sanchez A, Dominguez G, Garcia JM, Chen XQ, Stroun M, Provencio M, Espana P, Anker P, Bonilla F: Microsatellite alterations and TP53 mutations in plasma DNA of small-cell lung cancer patients: follow-up study and prognostic significance. Ann Oncol 2000, 11:1097-1104.
  • [16]Gurrola-Diaz C, Lacroix J, Dihlmann S, Becker CM, von Knebel Doeberitz M: Reduced expression of the neuron restrictive silencer factor permits transcription of glycine receptor alpha1 subunit in small-cell lung cancer cells. Oncogene 2003, 22:5636-5645.
  • [17]Westerman BA, Neijenhuis S, Poutsma A, Steenbergen RD, Breuer RH, Egging M, van Wijk IJ, Oudejans CB: Quantitative reverse transcription-polymerase chain reaction measurement of HASH1 (ASCL1), a marker for small cell lung carcinomas with neuroendocrine features. Clin Cancer Res 2002, 8:1082-1086.
  • [18]Hibi K, Takahashi T, Sekido Y, Ueda R, Hida T, Ariyoshi Y, Takagi H, Takahashi T: Coexpression of the stem cell factor and the c-kit genes in small-cell lung cancer. Oncogene 1991, 6:2291-2296.
  • [19]Araki K, Ishii G, Yokose T, Nagai K, Funai K, Kodama K, Nishiwaki Y, Ochiai A: Frequent overexpression of the c-kit protein in large cell neuroendocrine carcinoma of the lung. Lung Cancer 2003, 40:173-180.
  • [20]Plummer H 3rd, Catlett J, Leftwich J, Armstrong B, Carlson P, Huff T, Krystal G: c-myc expression correlates with suppression of c-kit protooncogene expression in small cell lung cancer cell lines. Cancer Res 1993, 53:4337-4342.
  • [21]Rygaard K, Nakamura T, Spang-Thomsen M: Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts. Br J Cancer 1993, 67:37-46.
  • [22]Krystal GW, Honsawek S, Litz J, Buchdunger E: The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res 2000, 6:3319-3326.
  • [23]Wang WL, Healy ME, Sattler M, Verma S, Lin J, Maulik G, Stiles CD, Griffin JD, Johnson BE, Salgia R: Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene 2000, 19:3521-3528.
  • [24]Niklinski J, Furman M, Laudanski J, Palynyczko Z, Welk M: Evaluation of carcinoembryonic antigen (CEA) and brain-type creatine kinase (CK-BB) in serum from patients with carcinoma of the lung. Neoplasma 1991, 38:129-135.
  • [25]Hiyama K, Hiyama E, Ishioka S, Yamakido M, Inai K, Gazdar AF, Piatyszek MA, Shay JW: Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 1995, 87:895-902.
  • [26]Viard-Leveugle I, Veyrenc S, French LE, Brambilla C, Brambilla E: Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma. J Pathol 2003, 201:268-277.
  • [27]Hopkins-Donaldson S, Ziegler A, Kurtz S, Bigosch C, Kandioler D, Ludwig C, Zangemeister-Wittke U, Stahel R: Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 2003, 10:356-364.
  • [28]Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT, Reddy JL, Brambilla E, Takahashi T, Minna JD, Chaudhary PM, Gazdar AF: Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 2002, 1:65-69.
  • [29]Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, Chilvers ER, Dransfield I, Donnelly SC, Strieter R, Haslett C: Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999, 5:662-668.
  文献评价指标  
  下载次数:5次 浏览次数:13次