期刊论文详细信息
Particle and Fibre Toxicology
Molecular and epidemiological characterization of Plasmodium vivax recurrent infections in southern Mexico
Rene Torreblanca3  Elena V Choy2  Xinzhuan Su1  Gerardo Camas2  Marco A Sandoval2  Deirdre Joy1  Frida Santillán2  Jianbing Mu1  Lilia Gonzalez-Ceron2 
[1] Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, MD, 20892, USA;CRISP, National Institute for Public Health, Tapachula, Chiapas, 30700, Mexico;Sanitary Jurisdiction VII, Ministry of Health, Tapachula, Chiapas, Mexico
关键词: Southern Mexico;    Epidemiology;    Genetic homology;    Relapse;    Hypnozoite;    Plasmodium vivax;   
Others  :  1227993
DOI  :  10.1186/1756-3305-6-109
 received in 2012-09-03, accepted in 2013-04-03,  发布年份 2013
PDF
【 摘 要 】

Background

In southern Mexico, malaria transmission is low, seasonal, and persistent. Because many patients are affected by two or more malaria episodes caused by Plasmodium vivax, we carried out a study to determine the timing, frequency, and genetic identity of recurrent malaria episodes in the region between 1998 and 2008.

Methods

Symptomatic patients with more than one P. vivax infection were followed up, and blood samples were collected from primary and recurrent infections. DNA extracted from infected blood samples was analyzed for restriction fragment length polymorphism (RFLP) in genes encoding csp and msp3α, as well as size variation in seven microsatellites.

Results

One hundred and forty six parasite samples were collected from 70 patients; of these, 65 patients had one recurrent infection, four had two, and one had three recurrent infections. The majority of recurrent infections occurred within one year of the primary infection, some of which were genetically homologous to the primary infection. As the genetic diversity in the background population was high, the probability of homologous re-infection was low and the homologous recurrences likely reflected relapses. These homologous recurrent infections generally had short (< 6 months) or long (6–12 months) intervals between the primary (PI) and recurrent (RI) infections; whereas infections containing heterologous genotypes had relatively longer intervals. The epidemiological data indicate that heterologous recurrences could be either relapse or re-infections.

Conclusions

Genetic and temporal analysis of P. vivax recurrence patterns in southern Mexico indicated that relapses play an important role in initiating malaria transmission each season. The manifestation of these infections during the active transmission season allowed the propagation of diverse hypnozoite genotypes. Both short- and long-interval relapses have contributed to parasite persistence and must be considered as targets of treatment for malaria elimination programs in the region to be successful.

【 授权许可】

   
2012 Gonzalez-Ceron et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150930084627880.pdf 797KB PDF download
Figure 4. 40KB Image download
Figure 3. 56KB Image download
Figure 2. 52KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Centro Nacional de Vigilancia Epidemiológica y Control de Enfermedades: Dirección general de epidemiología: Secretaria de Salud México. http://www.dgepi.salud.gob.mx/2010/plantilla/intd_boletin.html webcite
  • [2]Betanzos AF: La malaria en México. Progresos y desafíos hacia su eliminación Challenges and progress in the elimination of malaria in Mexico [Challenges and progress in the elimination of malaria in Mexico. Bol Med Hosp Infant Mex 2011, 68(2):159-168.
  • [3]Cox FE: History of the discovery of the malaria parasites and their vectors. Parasit Vectors 2010, 3(1):5. BioMed Central Full Text
  • [4]Baird JK, Hoffman SL: Primaquine therapy for malaria. Clin Infect Dis 2004, 39(9):1336-1345.
  • [5]White NJ: Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 2011, 10:297. BioMed Central Full Text
  • [6]Verhave JP: Experimental, therapeutic and natural transmission of Plasmodium vivax tertian malaria: scientific and anecdotal data on the history of Dutch malaria studies. Parasit Vectors 2013, 6(1):19. BioMed Central Full Text
  • [7]Contacos PG, Collins WE: Letter: Malarial relapse mechanism. Trans R Soc Trop Med Hyg 1973, 67(4):617-618.
  • [8]Contacos PG, Collins WE, Jeffery GM, Krotoski WA, Howard WA: Studies on the characterization of Plasmodium vivax strains from Central America. Am J Trop Med Hyg 1972, 21(5):707-712.
  • [9]Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ: Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg 2006, 75:402-415.
  • [10]WHO (Ed): Guidelines for malaria treatment. Second edition. Geneva; 2010. http://www.who.int/malaria/publications/atoz/9789241547925/en/index.html webcite
  • [11]Baird JK, Schwartz E, Hoffman SL: Prevention and treatment of vivax malaria. Curr Infect Dis Rep 2007, 9(1):39-46.
  • [12]Goller JL, Jolley D, Ringwald P, Biggs BA: Regional differences in the response of Plasmodium vivax malaria to primaquine as anti-relapse therapy. Am J Trop Med Hyg 2007, 76(2):203-207.
  • [13]Spudick JM, Garcia LS, Graham DM, Haake DA: Diagnostic and therapeutic pitfalls associated with primaquine-tolerant Plasmodium vivax. J Clin Microbiol 2005, 43(2):978-981.
  • [14]Secretaria de Salud: NORMA Oficial Mexicana NOM-032-SSA2-2002, Para la vigilancia epidemiológica, prevención y control de enfermedades transmitidas por vector. México; 2002. http://www.salud.gob.mx/unidades/cdi/nom/032ssa202.html webcite
  • [15]Mendez Galvan JF, Guerrero Alvarado J, Gonalez Mora M, Perez Landa M, Quintero Cabanillas R: Evaluation of an alternative scheme of treatment for the control of malaria. Salud Publica Mex 1984, 26(6):561-572.
  • [16]WHO: World Malaria Report. Geneva; 2009. http://www.who.int/malaria/world_malaria_report_2009/en/index.html webcite
  • [17]Craig AA, Kain KC: Molecular analysis of strains of Plasmodium vivax from paired primary and relapse infections. J Infect Dis 1996, 174(2):373-379.
  • [18]Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q: Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis 2007, 195(7):934-941.
  • [19]Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S: Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis 2007, 195(7):927-933.
  • [20]Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE: Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun 1999, 67(1):410-412.
  • [21]Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC: Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites. Exp Parasitol 2001, 98(3):152-161.
  • [22]Gonzalez-Ceron L, Rodriguez MH, Chavez-Munguia B, Santillan F, Nettel JA, Hernandez-Avila JE: Plasmodium vivax: impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Exp Parasitol 2007, 115(1):59-67.
  • [23]Zakeri S, Barjesteh H, Djadid ND: Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J 2006, 5:53. BioMed Central Full Text
  • [24]Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW: Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 1999, 101(1–2):131-147.
  • [25]Rayner JC, Corredor V, Feldman D, Ingravallo P, Iderabdullah F, Galinski MR, Barnwell JW: Extensive polymorphism in the Plasmodium vivax merozoite surface coat protein MSP-3alpha is limited to specific domains. Parasitology 2002, 125(Pt 5):393-405.
  • [26]Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J: Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg 2003, 68(5):613-619.
  • [27]Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol 2008, 25(6):1245-1252.
  • [28]Kain KC, Brown AE, Webster HK, Wirtz RA, Keystone JS, Rodriguez MH, Kinahan J, Rowland M, Lanar DE: Circumsporozoite genotyping of global isolates of Plasmodium vivax from dried blood specimens. J Clin Microbiol 1992, 30(7):1863-1866.
  • [29]Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, White NJ, Snounou G: Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J 2005, 4(1):20. BioMed Central Full Text
  • [30]Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP: Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg 1999, 61(4):518-525.
  • [31]Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NP, White NJ: Genetic diversity of Plasmodium vivax in Kolkata. India. Malar J 2006, 5:71. BioMed Central Full Text
  • [32]Adak T, Valecha N, Sharma VP: Plasmodium vivax polymorphism in a clinical drug trial. Clin Diagn Lab Immunol 2001, 8(5):891-894.
  • [33]Peakall R, Smouse PE: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 2012, 28(19):2537-2539.
  • [34]Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I: Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis 2009, 199(7):1074-1080.
  • [35]Mason J: Patterns of Plasmodium vivax recurrence in a high-incidence coastal area of El Salvador, C. A. Am J Trop Med Hyg 1975, 24(4):581-585.
  • [36]Hulden L, Heliovaara K: Natural relapses in vivax malaria induced by Anopheles mosquitoes. Malar J 2008, 7:64. BioMed Central Full Text
  • [37]Rodriguez MH, Betanzos-Reyes AF, Hernandez-Avila JE, Mendez-Galvan JF, Danis-Lozano R, Altamirano-Jimenez A: The participation of secondary clinical episodes in the epidemiology of vivax malaria during pre- and post-implementation of focal control in the state of Oaxaca. Mexico. Am J Trop Med Hyg 2009, 80(6):889-895.
  • [38]Lin E, Kiniboro B, Gray L, Dobbie S, Robinson L, Laumaea A, Schopflin S, Stanisic D, Betuela I, Blood-Zikursh M: Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children. PLoS One 2010, 5(2):e9047.
  • [39]Hanna JN, Ritchie SA, Eisen DP, Cooper RD, Brookes DL, Montgomery BL: An outbreak of Plasmodium vivax malaria in Far North Queensland, 2002. Med J Aust 2004, 180(1):24-28.
  • [40]Havryliuk T, Ferreira MU: A closer look at multiple-clone Plasmodium vivax infections: detection methods, prevalence and consequences. Mem Inst Oswaldo Cruz 2009, 104(1):67-73.
  • [41]Rodriguez MH, Betanzos-Reyes AF: Plan to improve malaria control towards its elimination in Mesoamerica. Salud Publica Mex 2011, 53(3):S333-348.
  • [42]WHO: Malaria elimination. A field manual for low and moderate endemic countries. Geneva; 2007. http://whqlibdoc.who.int/publications/2007/9789241596084_eng.pdf webcite
  • [43]Kim JR, Nandy A, Maji AK, Addy M, Dondorp AM, Day NP, Pukrittayakamee S, White NJ, Imwong M: Genotyping of Plasmodium vivax reveals both short and long latency relapse patterns in Kolkata. PLoS One 2012, 7(7):e39645.
  • [44]Cogswell FB: The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 1992, 5(1):26-35.
  • [45]Bunnag D, Karbwang J, Thanavibul A, Chittamas S, Ratanapongse Y, Chalermrut K, Bangchang KN, Harinasuta T: High dose of primaquine in primaquine resistant vivax malaria. Trans R Soc Trop Med Hyg 1994, 88(2):218-219.
  • [46]Carmona-Fonseca J, Maestre A: Prevention of Plasmodium vivax malaria recurrence: efficacy of the standard total dose of primaquine administered over 3 days. Acta Trop 2009, 112(2):188-192.
  • [47]Hanf M, Stephani A, Basurko C, Nacher M, Carme B: Determination of the Plasmodium vivax relapse pattern in Camopi. French Guiana Malar J 2009, 8:278. BioMed Central Full Text
  • [48]Boulos M, Amato Neto V, Dutra AP, Di Santi SM, Shiroma M: Frequency of malaria relapse due to Plasmodium vivax in a non-endemic region (Sao Paulo, Brazil). Rev Inst Med Trop Sao Paulo 1991, 33(2):143-146.
  • [49]Orjuela-Sanchez P, da Silva NS, da Silva-Nunes M, Ferreira MU: Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia. Am J Trop Med Hyg 2009, 81(6):961-968.
  • [50]Coatney GR, Cooper WC, Young MD: Studies in human malaria. XXX. A summary of 204 sporozoite-induced infections with the Chesson strain of Plasmodium vivax. J Natl Malar Soc 1950, 9(4):381-396.
  • [51]White NJ: Malaria. In Manson's Tropical Diseases. 21st edition. Edited by Cook GC, Zumla AI. London: WB Sounders; 2003:1205-1295.
  • [52]Moon SU, Lee HW, Kim JY, Na BK, Cho SH, Lin K, Sohn WM, Kim TS: High frequency of genetic diversity of Plasmodium vivax field isolates in Myanmar. Acta Trop 2009, 109(1):30-36.
  • [53]Haghdoost AA, Mazhari S, Bahaadini K: Estimating the relapse risk of Plasmodium vivax in Iran under national chemotherapy scheme using a novel method. J Vector Borne Dis 2006, 43(4):168-172.
  • [54]Mangoni AA, Jackson SH: Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol 2004, 57(1):6-14.
  • [55]Maslin J, Cuguillere A, Bonnet D, Martet G: Malaria attack: a very late relapse due to Plasmodium vivax. Bull Soc Pathol Exot 1997, 90(1):25-26.
  文献评价指标  
  下载次数:35次 浏览次数:21次