Molecular Cytogenetics | |
Large cryptic genomic rearrangements with apparently normal karyotypes detected by array-CGH | |
Alfredo Brusco4  Giovanni Battista Ferrero7  Enrico Grosso4  Margherita Cirillo Silengo7  Giovanni Botta2  Giorgia Mandrile3  Gabriella Restagno5  Valentina Asnaghi5  Monica Grosso5  Marina Gandione6  Patrizia Pappi4  Flavia Talarico4  Simona Cavalieri4  Elisa Giorgio1  Cecilia Mancini1  Alessandro Calcia1  Franco Fiocchi4  Giorgia Gai4  Gaetana D¿Alessandro4  Valeria Giorgia Naretto4  Elga Fabia Belligni7  Elisa Biamino7  Elisa Savin4  Eleonora Di Gregorio4  | |
[1] Department of Medical Sciences, University of Torino, via Santena 19, Torino, 10126, Italy;Department of Pathology, Città della Salute e della Scienza University Hospital, Turin, Italy;Department Clinical and Biological Sciences, University of Torino, Torino, Italy;Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Turin, Italy;Laboratory of Molecular Genetics, Città della Salute e della Scienza University Hospital, Turin, Italy;Department of Neuropsychiatry, University of Torino, Turin, Italy;Department of Public Health and Pediatrics, University of Torino, Turin, Italy | |
关键词: Intellectual disability; Genomic rearrangement; CNV; Unbalanced derivative chromosomes; Array-CGH; GTG-banding; | |
Others : 1163002 DOI : 10.1186/s13039-014-0082-7 |
|
received in 2014-08-19, accepted in 2014-10-29, 发布年份 2014 | |
【 摘 要 】
Background
Conventional karyotyping (550 bands resolution) is able to identify chromosomal aberrations >5-10 Mb, which represent a known cause of intellectual disability/developmental delay (ID/DD) and/or multiple congenital anomalies (MCA). Array-Comparative Genomic Hybridization (array-CGH) has increased the diagnostic yield of 15-20%.
Results
In a cohort of 700 ID/DD cases with or without MCA, including 15 prenatal diagnoses, we identified a subgroup of seven patients with a normal karyotype and a large complex rearrangement detected by array-CGH (at least 6, and up to 18 Mb). FISH analysis could be performed on six cases and showed that rearrangements were translocation derivatives, indistinguishable from a normal karyotype as they involved a similar band pattern and size. Five were inherited from a parent with a balanced translocation, whereas two were apparently de novo. Genes spanning the rearrangements could be associated with some phenotypic features in three cases (case 3: DOCK8; case 4: GATA3, AKR1C4; case 6: AS/PWS deletion, CHRNA7), and in two, likely disease genes were present (case 5: NR2F2, TP63, IGF1R; case 7: CDON). Three of our cases were prenatal diagnoses with an apparently normal karyotype.
Conclusions
Large complex rearrangements of up to 18 Mb, involving chromosomal regions with similar size and band appearance may be overlooked by conventional karyotyping. Array-CGH allows a precise chromosomal diagnosis and recurrence risk definition, further confirming this analysis as a first tier approach to clarify molecular bases of ID/DD and/or MCA. In prenatal tests, array-CGH is confirmed as an important tool to avoid false negative results due to karyotype intrinsic limit of detection.
【 授权许可】
2014 Di Gregorio et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150413085109788.pdf | 2363KB | download | |
Figure 3. | 22KB | Image | download |
Figure 2. | 138KB | Image | download |
Figure 1. | 139KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Vissers LE, de Vries BB, Veltman JA: Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010, 47(5):289-297.
- [2]Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, et al.: Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010, 86:749-764.
- [3]Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC: The identification of microdeletion syndromes and other chromosome abnormalities: Cytogenetic methods of the past, new technologies for the future. Am J Med Genet C 2007, 145C(4):335-345.
- [4]Pickering DL, Eudy JD, Olney AH, Dave BJ, Golden D, Stevens J, Sanger WG: Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet Med 2008, 10(4):262-266.
- [5]Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA: Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2007, 2:e327.
- [6]Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A, Yatsenko SA, Cooper ML, Furman P, Stankiewicz P, Lupski JR, Chinault AC, Beaudet AL: Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genetics in medicine : official journal of the American College of Medical Genetics 2005, 7:422-432.
- [7]Jacobs PA, Browne C, Gregson N, Joyce C, White H: Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet 1992, 29(2):103-108.
- [8]Madan K: Balanced complex chromosome rearrangements: reproductive aspects. A review. Am J Med Genet A 2012, 158A(4):947-963.
- [9]Bertino E, Gilli G, Occhi L, Giuliani F, Di Nicola P, Spada E, Fabris C: Postnatal growth of preterm infants: which reference charts? Minerva Pediatr 2010, 62(3 Suppl 1):71-74.
- [10]D'Amours G, Kibar Z, Mathonnet G, Fetni R, Tihy F, Desilets V, Nizard S, Michaud JL, Lemyre E: Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet 2012, 81(2):128-141.
- [11]Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard MJ, Bottani A, Castori M, Cormier-Daire V, Deardorff MA, Filges I, Fryer A, Fryns JP, Gana S, Garavelli L, Gillessen-Kaesbach G, Hall BD, Horn D, Huylebroeck D, Klapecki J, Krajewska-Walasek M, Kuechler A, Lines MA, Maas S, Macdermot KD, McKee S, Magee A, et al.: Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 2012, 44:445-449. S441
- [12]Griggs BL, Ladd S, Saul RA, DuPont BR, Srivastava AK: Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics 2008, 91(2):195-202.
- [13]Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K: GATA3 haplo-insufficiency causes human HDR syndrome. Nature 2000, 406:419-422.
- [14]Fluck CE, Meyer-Boni M, Pandey AV, Kempna P, Miller WL, Schoenle EJ, Biason-Lauber A: Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet 2011, 89(2):201-218.
- [15]Blumenthal I, Ragavendran A, Erdin S, Klei L, Sugathan A, Guide JR, Manavalan P, Zhou JQ, Wheeler VC, Levin JZ, Ernst C, Roeder K, Devlin B, Gusella JF, Talkowski ME: Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am J Hum Genet 2014, 94:870-883.
- [16]Falace A, Vanni N, Mallamaci A, Striano P, Zara F: Do regulatory regions matter in FOXG1 duplications? Eur J Hum Genet 2013, 21(4):365-366.
- [17]Brunetti-Pierri N, Paciorkowski AR, Ciccone R, Della Mina E, Bonaglia MC, Borgatti R, Schaaf CP, Sutton VR, Xia Z, Jelluma N, Ruivenkamp C, Bertrand M, de Ravel TJ, Jayakar P, Belli S, Rocchetti K, Pantaleoni C, D'Arrigo S, Hughes J, Cheung SW, Zuffardi O, Stankiewicz P: Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet 2011, 19:102-107.
- [18]Striano P, Paravidino R, Sicca F, Chiurazzi P, Gimelli S, Coppola A, Robbiano A, Traverso M, Pintaudi M, Giovannini S, Operto F, Vigliano P, Granata T, Coppola G, Romeo A, Specchio N, Giordano L, Osborne LR, Gimelli G, Minetti C, Zara F: West syndrome associated with 14q12 duplications harboring FOXG1. Neurology 2011, 76:1600-1602.
- [19]Yeung A, Bruno D, Scheffer IE, Carranza D, Burgess T, Slater HR, Amor DJ: 4.45 Mb microduplication in chromosome band 14q12 including FOXG1 in a girl with refractory epilepsy and intellectual impairment. Eur J Med Genet 2009, 52(6):440-442.
- [20]McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, Orlow SJ, van Haeringen A, Ausems MG, Yang A, McKeon F, Bamshad MA, Brunner HG, Hamel BC, van Bokhoven H: Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet 2001, 10:221-229.
- [21]Kantaputra PN, Hamada T, Kumchai T, McGrath JA: Heterozygous mutation in the SAM domain of p63 underlies Rapp-Hodgkin ectodermal dysplasia. J Dent Res 2003, 82(6):433-437.
- [22]van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J, Merkx GF, Tenconi R, Fryns JP, Verloes A, Newbury-Ecob RA, Raas-Rotschild A, Majewski F, Beemer FA, Janecke A, Chitayat D, Crisponi G, Kayserili H, Yates JR, Neri G, Brunner HG: p63 Gene mutations in eec syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet 2001, 69:481-492.
- [23]Leoyklang P, Siriwan P, Shotelersuk V: A mutation of the p63 gene in non-syndromic cleft lip. J Med Genet 2006, 43(6):e28.
- [24]Al Turki S, Manickaraj AK, Mercer CL, Gerety SS, Hitz MP, Lindsay S, D'Alessandro LC, Swaminathan GJ, Bentham J, Arndt AK, Low J, Breckpot J, Gewillig M, Thienpont B, Abdul-Khaliq H, Harnack C, Hoff K, Kramer HH, Schubert S, Siebert R, Toka O, Cosgrove C, Watkins H, Lucassen AM, O'Kelly IM, Salmon AP, Bu'lock FA, Granados-Riveron J, Setchfield K, Thornborough C, et al.: Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet 2014, 94:574-585.
- [25]Agrogiannis GD, Sifakis S, Patsouris ES, Konstantinidou AE: Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review). Mol Med Rep 2014, 10(2):579-584.
- [26]Bae GU, Domene S, Roessler E, Schachter K, Kang JS, Muenke M, Krauss RS: Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet 2011, 89(2):231-240.