期刊论文详细信息
Molecular Pain
Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization
Zhizhong Z Pan1  Yuan-Yuan Hou1  Wei Wang1  You-Qing Cai1 
[1] Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
关键词: Pain;    Rostral ventromedial medulla;    Descending facilitation;    Optogenetic;    5-HT;    Serotonin;   
Others  :  1135559
DOI  :  10.1186/1744-8069-10-70
 received in 2014-04-16, accepted in 2014-06-18,  发布年份 2014
PDF
【 摘 要 】

Background

The rostral ventromedial medulla (RVM) is a key brainstem structure that conveys powerful descending influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT) neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear.

Results

In this study using optogenetic stimulation in tryptophan hydroxylase 2 (TPH2)- Channelrhodopsin 2 (ChR2) transgenic mice, we determined the behavioral effects of selective activation of RVM 5-HT neurons on mechanical and thermal pain behaviors in vivo. We found that ChR2-EYFP-positive neurons strongly co-localized with TPH2-positive (5-HT) neurons in RVM. Optogenetic stimulation significantly increased c-fos expression in 5-HT cells in the RVM of TPH2-ChR2 mice, but not in wild type mice. Behaviorally, the optogenetic stimulation decreased both mechanical and thermal pain threshold in an intensity-dependent manner, with repeated stimulation producing sensitized pain behavior for up to two weeks.

Conclusions

These results suggest that selective activation of RVM 5-HT neurons exerts a predominant effect of pain facilitation under control conditions.

【 授权许可】

   
2014 Cai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150310063118127.pdf 1947KB PDF download
Figure 6. 42KB Image download
Figure 5. 43KB Image download
Figure 4. 36KB Image download
Figure 3. 84KB Image download
Figure 2. 203KB Image download
Figure 1. 211KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Basbaum AI, Bautista DM, Scherrer G, Julius D: Cellular and molecular mechanisms of pain. Cell 2009, 139:267-284.
  • [2]Fields H: State-dependent opioid control of pain. Nat Rev Neurosci 2004, 5:565-575.
  • [3]Millan MJ: Descending control of pain. Prog Neurobiol 2002, 66:355-474.
  • [4]Fields HL, Heinricher MM, Mason P: Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 1991, 14:219-245.
  • [5]Porreca F, Ossipov MH, Gebhart GF: Chronic pain and medullary descending facilitation. Trends Neurosci 2002, 25:319-325.
  • [6]Gebhart GF: Descending modulation of pain. Neurosci Biobehav Rev 2004, 27:729-737.
  • [7]Vanegas H, Schaible HG: Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev 2004, 46:295-309.
  • [8]Robinson DA, Calejesan AA, Wei F, Gebhart GF, Zhuo M: Endogenous facilitation: from molecular mechanisms to persistent pain. Curr Neurovasc Res 2004, 1:11-20.
  • [9]Buhler AV, Choi J, Proudfit HK, Gebhart GF: Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain 2005, 114:285-294.
  • [10]Calejesan AA, Ch’ang MH, Zhuo M: Spinal serotonergic receptors mediate facilitation of a nociceptive reflex by subcutaneous formalin injection into the hindpaw in rats. Brain Res 1998, 798:46-54.
  • [11]Hammond DL, Yaksh TL: Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res 1984, 298:329-337.
  • [12]Wei F, Dubner R, Ren K: Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain 1999, 80:127-141.
  • [13]Zhao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RW, Chen ZF: Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 2007, 27:6045-6053.
  • [14]Kim YS, Chu Y, Han L, Li M, Li Z, Lavinka PC, Sun S, Tang Z, Park K, Caterina MJ, Ren K, Dubner R, Wei F, Dong X: Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain. Neuron 2014, 81:873-887.
  • [15]Wei F, Dubner R, Zou S, Ren K, Bai G, Wei D, Guo W: Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci 2010, 30:8624-8636.
  • [16]Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K: Optogenetics in neural systems. Neuron 2011, 71:9-34.
  • [17]Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S: Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 2012, 484:381-385.
  • [18]Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, Thompson KR, Gradinaru V, Ramakrishnan C, Deisseroth K: Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471:358-362.
  • [19]Tye KM, Deisseroth K: Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 2012, 13:251-266.
  • [20]Ji G, Neugebauer V: Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 2012, 5:36. BioMed Central Full Text
  • [21]Daou I, Tuttle AH, Longo G, Wieskopf JS, Bonin RP, Ase AR, Wood JN, De Koninck Y, Ribeiro-da-Silva A, Mogil JS, Seguela P: Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 2013, 33:18631-18640.
  • [22]Crock LW, Kolber BJ, Morgan CD, Sadler KE, Vogt SK, Bruchas MR, Gereau RW: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 2012, 32:14217-14226.
  • [23]Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M: Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013, 6:59. BioMed Central Full Text
  • [24]Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G: Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011, 8:745-752.
  • [25]Braz JM, Basbaum AI: Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. J Comp Neurol 2008, 507:1990-2003.
  • [26]Braz JM, Enquist LW, Basbaum AI: Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. J Comp Neurol 2009, 514:145-160.
  • [27]Rahman W, Bauer CS, Bannister K, Vonsy JL, Dolphin AC, Dickenson AH: Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain. Mol Pain 2009, 5:45. BioMed Central Full Text
  • [28]Okubo M, Castro A, Guo W, Zou S, Ren K, Wei F, Keller A, Dubner R: Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci 2013, 33:5152-5161.
  • [29]Aimone LD, Gebhart GF: Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. J Neurosci 1986, 6:1803-1813.
  • [30]Inase M, Nakahama H, Otsuki T, Fang JZ: Analgesic effects of serotonin microinjection into nucleus raphe magnus and nucleus raphe dorsalis evaluated by the monosodium urate (MSU) tonic pain model in the rat. Brain Res 1987, 426:205-211.
  • [31]Llewelyn MB, Azami J, Roberts MH: Effects of 5-hydroxytryptamine applied into nucleus raphe magnus on nociceptive thresholds and neuronal firing rate. Brain Res 1983, 258:59-68.
  • [32]Marinelli S, Vaughan CW, Schnell SA, Wessendorf MW, Christie MJ: Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 2002, 22:10847-10855.
  • [33]Wang H, Wessendorf MW: Mu- and delta-opioid receptor mRNAs are expressed in spinally projecting serotonergic and nonserotonergic neurons of the rostral ventromedial medulla. J Comp Neurol 1999, 404:183-196.
  • [34]Alhaider AA, Lei SZ, Wilcox GL: Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 1991, 11:1881-1888.
  • [35]Green GM, Scarth J, Dickenson A: An excitatory role for 5-HT in spinal inflammatory nociceptive transmission; state-dependent actions via dorsal horn 5-HT(3) receptors in the anaesthetized rat. Pain 2000, 89:81-88.
  • [36]Gu M, Miyoshi K, Dubner R, Guo W, Zou S, Ren K, Noguchi K, Wei F: Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade. J Neurosci 2011, 31:12823-12836.
  • [37]Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S: Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 2007, 130:235-248.
  • [38]Oatway MA, Chen Y, Weaver LC: The 5-HT3 receptor facilitates at-level mechanical allodynia following spinal cord injury. Pain 2004, 110:259-268.
  • [39]Paul D, Yao D, Zhu P, Minor LD, Garcia MM: 5-hydroxytryptamine3 (5-HT3) receptors mediate spinal 5-HT antinociception: an antisense approach. J Pharmacol Exp Ther 2001, 298:674-678.
  • [40]Svensson CI, Tran TK, Fitzsimmons B, Yaksh TL, Hua XY: Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Lett 2006, 580:6629-6634.
  • [41]Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D, Basbaum AI: The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 2002, 22:1010-1019.
  • [42]Zhang L, Hammond DL: Cellular basis for opioid potentiation in the rostral ventromedial medulla of rats with persistent inflammatory nociception. Pain 2010, 149:107-116.
  • [43]Kuner R: Central mechanisms of pathological pain. Nat Med 2010, 16:1258-1266.
  • [44]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
  • [45]Cai YQ, Chen SR, Pan HL: Upregulation of nuclear factor of activated T-cells by nerve injury contributes to development of neuropathic pain. J Pharmacol Exp Ther 2013, 345:161-168.
  • [46]Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32:77-88.
  文献评价指标  
  下载次数:17次 浏览次数:9次