期刊论文详细信息
Molecular Cytogenetics
Activation of the two microRNA clusters C19MC and miR-371-3 does not play prominent role in thyroid cancer
Jörn Bullerdiek2  Klaus Junker1  Daniel Krause1  Birgit Rommel2  Norbert Drieschner2  Johannes Wolfram Debler2  Inga Flor2  Volkhard Rippe2 
[1] Department of Pathology, Hospital Bremen-Mitte, St.-Jürgen-Str. 1, 28177, Bremen, Germany;Center for Human Genetics, University of Bremen, Leobener Str. ZHG, 28359, Bremen, Germany
关键词: miR-371-3;    C19MC;    microRNAs;    Thyroid tumors;   
Others  :  1151288
DOI  :  10.1186/1755-8166-5-40
 received in 2012-04-25, accepted in 2012-08-21,  发布年份 2012
PDF
【 摘 要 】

Chromosomal rearrangements of band 19q13.4 are frequent cytogenetic alterations in benign thyroid adenomas. Apparently, these alterations lead to the upregulation of genes encoding microRNAs of two clusters mapping to the breakpoint region, i.e. miR-371-3 and C19MC. Since members of both clusters have been associated with neoplastic growth in other tumor entities the question arises whether or not their upregulation predisposes to malignant transformation of follicular cells of the thyroid. To address this question we have quantified the expression of miR-372 and miR-520c-3p in samples of 114 thyroid cancers including eight anaplastic thyroid carcinomas, 25 follicular thyroid carcinomas, 78 papillary thyroid carcinomas (including 13 follicular variants thereof), two medullary thyroid carcinomas and one oncocytic thyroid carcinoma. Additionally, we quantified miR-371a-3p and miR-519a-3p in selected samples. While in neither of the cases miR-520c-3p and miR-519a-3p were found to be upregulated, one papillary and one anaplastic thyroid carcinoma, respectively, showed upregulation of miR-372 and miR-371a-3p. However, in these cases fluorescence in situ hybridization did not reveal rearrangements of the common breakpoint region as affected in adenomas. Thus, these rearrangements do apparently not play a major role as first steps in malignant transformation of the thyroid epithelium. Moreover, there is no evidence that 19q13.4 rearrangements characterize a subgroup of thyroid adenomas associated with a higher risk to undergo malignant transformation. Vice versa, the mechanisms by which 19q13.4 rearrangements contribute to benign tumorigenesis in the thyroid remain to be elucidated.

【 授权许可】

   
2012 Rippe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406053718544.pdf 2523KB PDF download
Figure 4. 61KB Image download
Figure 3. 50KB Image download
Figure 2. 68KB Image download
Figure 1. 164KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [2]Li M, Li J, Ding X, He M, Cheng SY: microRNA and cancer. AAPS J 2010, 12:309-317.
  • [3]Bartnitzke S, Herrmann ME, Lobeck H, Zuschneid W, Neuhaus P, Bullerdiek J: Cytogenetic findings on eight follicular thyroid adenomas including one with a t(10;19). Cancer Genet Cytogenet 1989, 39:65-68.
  • [4]Belge G, Rippe V, Meiboom M, Drieschner N, Garcia E, Bullerdiek J: Delineation of a 150-kb breakpoint cluster in benign thyroid tumors with 19q13.4 aberrations. Cytogenet Cell Genet 2001, 93:48-51.
  • [5]Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G, Bullerdiek J: The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 2010, 5:e9485.
  • [6]Tsai KW, Kao HW, Chen HC, Chen SJ, Lin WC: Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics 2009, 4:587-592.
  • [7]Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, et al.: Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004, 270:488-498.
  • [8]Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, et al.: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 2008, 26:2496-2505.
  • [9]Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, Fan JB, Loring JF: Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 2008, 26:1506-1516.
  • [10]Ren J, Jin P, Wang E, Marincola FM, Stroncek DF: MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 2009, 7:20. BioMed Central Full Text
  • [11]Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008, 18:610-621.
  • [12]Cao H, Yang CS, Rana TM: Evolutionary emergence of microRNAs in human embryonic stem cells. PLoS One 2008, 3:e2820.
  • [13]Liang Y, Ridzon D, Wong L, Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007, 8:166. BioMed Central Full Text
  • [14]Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, et al.: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005, 37:766-770.
  • [15]Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, Cavaille J: The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010, 19:3566-3582.
  • [16]Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, et al.: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008, 10:202-210.
  • [17]Yang K, Handorean AM, Iczkowski KA: MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol 2009, 2:361-369.
  • [18]Cairo S, Wang Y, de Reynies A, Duroure K, Dahan J, Redon MJ, Fabre M, McClelland M, Wang XW, Croce CM, Buendia MA: Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 2010, 107:20471-20476.
  • [19]Yan GR, Xu SH, Tan ZL, Liu L, He QY: Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 2011, 11:912-920.
  • [20]Flor I, Bullerdiek J: The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 2012, 227:270-274.
  • [21]Arora N, Scognamiglio T, Zhu B, Fahey TJ 3rd: Do benign thyroid nodules have malignant potential? An evidence-based review. World J Surg 2008, 32:1237-1246.
  • [22]Klemke M, Drieschner N, Laabs A, Rippe V, Belge G, Bullerdiek J, Sendt W: On the prevalence of the PAX8-PPARG fusion resulting from the chromosomal translocation t(2;3)(q13;p25) in adenomas of the thyroid. Cancer Genet 2011, 204:334-339.
  • [23]Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V, Vieira de Castro I, Cardoso-de-Oliveira M, Fonseca E, Soares P, Sobrinho-Simoes M: PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006, 91:213-220.
  • [24]Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA: PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 2000, 289:1357-1360.
  • [25]miRBase (Release 18):http://www.mirbase.org webcite
  • [26]Toffanin S, Hoshida Y, Lachenmayer A, Villanueva A, Cabellos L, Minguez B, Savic R, Ward SC, Thung S, Chiang DY, et al.: MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 2011, 140:1618-1628.
  • [27]Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, Mantovani V, Marinello J, Sabbioni S, Callegari E, et al.: In hepatocellular carcinoma miR-519d is upregulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 2012.
  • [28]Abdelmohsen K, Kim MM, Srikantan S, Mercken EM, Brennan SE, Wilson GM, Cabo R, Gorospe M: miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle 2010, 9:1354-1359.
  • [29]Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M: miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci U S A 2008, 105:20297-20302.
  • [30]Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M, Abdelmohsen K: MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2010, 2:333-343.
  • [31]Tang W, David FB, Wilson MM, Barwick BG, Leyland-Jones BR, Bouzyk MM: DNA extraction from formalin-fixed, paraffin-embedded tissue. Cold Spring Harb Protoc 2009, 2009:pdb prot5138.
  • [32]Klemke M, Drieschner N, Belge G, Burchardt K, Junker K, Bullerdiek J: Detection of PAX8-PPARG fusion transcripts in archival thyroid carcinoma samples by conventional RT-PCR. Genes Chromosomes Cancer 2012, 51:402-408.
  • [33]Drieschner N, Rippe V, Laabs A, Dittberner L, Nimzyk R, Junker K, Rommel B, Kiefer Y, Belge G, Bullerdiek J, Sendt W: Interphase fluorescence in situ hybridization analysis detects a much higher rate of thyroid tumors with clonal cytogenetic deviations of the main cytogenetic subgroups than conventional cytogenetics. Cancer Genet 2011, 204:366-374.
  文献评价指标  
  下载次数:30次 浏览次数:6次