期刊论文详细信息
Particle and Fibre Toxicology
ANISERP: a new serpin from the parasite Anisakis simplex
Teresa Gárate1  Florencio M. Ubeira5  Paulino Gómez-Puertas6  Victoria Martínez-Sernández5  Ana Saborido7  Esperanza Rodríguez1  Pamela Campioli1  Carolina Hurtado4  Maria J. Perteguer2  Elizabeth Valdivieso3 
[1] Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain;Parasitology Department, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain;Laboratorio de Biología Celular de Parásitos, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela;Present Address: Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Campus de Montepríncipe, Urb. Montepríncipe, Madrid, 28668, Spain;Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, A Coruña, Spain;Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) Campus UAM. Cantoblanco, Madrid, 28049, Spain;Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense, Madrid, Spain
关键词: Heparin;    Modelling analysis;    Anticoagulant properties;    Cathepsin L;    Thrombin;    Trypsin;    Anisakis;    Proteinase;    Serpin;   
Others  :  1222137
DOI  :  10.1186/s13071-015-1006-z
 received in 2014-11-17, accepted in 2015-07-11,  发布年份 2015
PDF
【 摘 要 】

Background

Serine proteinase inhibitors (serpins) finely regulate serine proteinase activity via a suicide substrate-like inhibitory mechanism. In parasitic nematodes, some serpins interact with host physiological processes; however, little is known about these essential molecules in Anisakis. This article reports the gene sequencing, cloning, expression and preliminary biochemical and bioinformatically-based structural characterization of a new Anisakis serpin (ANISERP).

Methods

The full AniSerp gene was cloned by specific RACE-PCR after screening an Anisakis simplex (L3) cDNA library. For biochemical assays, the AniSerp gene was subcloned into both prokaryotic and eukaryotic vectors, and the recombinant proteins were purified. The inhibitory properties of the proteins were tested in classical biochemical assays using human serine peptidases and AMC substrates. Immunolocalization of ANISERP, theoretical structural analysis and bioinformatically-based structural modelling of the ANISERP protein were also conducted.

Results

The AniSerp gene was found to have 1194 nucleotides, coding for a protein of 397 amino acid residues plus a putative N-terminal signal peptide. It showed significant similarity to other nematode, arthropod and mammalian serpins. The recombinant ANISERP expressed in the prokaryotic and eukaryotic systems inhibited the human serine proteases thrombin, trypsin and cathepsin G in a concentration-dependent manner. No inhibitory activity against Factor Xa, Factor XIa, Factor XIIa, elastase, plasmin or chymotrypsin was observed. ANISERP also acted on the cysteine protease cathepsin L. ANISERP was mainly localized in the nematode pseudocoelomic fluid, somatic muscle cell bodies and intestinal cells. The findings of molecular dynamics studies suggest that ANISERP inhibits thrombin via a suicide substrate-like inhibitory mechanism, similar to the mechanism of action of mammalian coagulation inhibitors. In contrast to findings concerning human antithrombin III, heparin had no effect on ANISERP anticoagulant inhibitory activity.

Conclusions

Our findings suggest that ANISERP is an internal Anisakis regulatory serpin and that the inhibitory activity against thrombin depends on a suicide substrate-like inhibitory mechanism, similar to that described for human antithrombin (AT)-III. The fact that heparin does not modulate the anticoagulant activity of ANISERP might be explained by the absence in the latter of five of the six positively charged residues usually seen at the AT-III-heparin binding site.

【 授权许可】

   
2015 Valdivieso et al.

【 预 览 】
附件列表
Files Size Format View
20150805083608610.pdf 2815KB PDF download
Fig. 5. 132KB Image download
Fig. 4. 12KB Image download
Fig. 3. 114KB Image download
Fig. 2. 96KB Image download
Fig. 1. 32KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Audícana MT, del Pozo MD, Iglesias R, Ubeira FM. Anisakis simplex and Pseudoterranova decipiens. In: International handbook on foodborne pathogens. Miliotis M, Bier J, editors. Marcell Dekker, New York; 2003: p.613-36.
  • [2]Geraci JR, St Aubin DJ. Effects of parasites on marine mammals. Int J Parasitol. 1987; 17:407-14.
  • [3]Ishikura H, Kikuchi K, Nagasawa K, Ooiwa T, Takamiya H, Sato N et al.. Anisakidae and anisakidosis. Prog Clin Parasitol. 1993; 3:43-102.
  • [4]Bier JW. Anisakiasis. Laboratory diagnosis of infectious diseases. In: Bacterial, mycotic and parasitic diseases. Balows A, Hausler WJ Jr, Ohashi M, Turano A, editors. Springer, New York; 1988: p.768-74.
  • [5]Valiñas B, Lorenzo S, Eiras A, Figueiras A, Sanmartín ML, Ubeira FM. Prevalence of and risk factors for IgE sensitization to Anisakis simplex in a Spanish population. Allergy. 2001; 56:667-71.
  • [6]Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev. 2008; 21:360-79.
  • [7]Anadón AM, Romarís F, Escalante M, Rodríguez E, Gárate T, Cuéllar C et al.. The Anisakis simplex Ani s 7 major allergen as an indicator of true Anisakis infections. Clin Exp Immunol. 2009; 156:471-8.
  • [8]Silverman GA, Whisstock JC, Bottomley SP, Huntington JA, Kaiserman D, Luke CJ et al.. Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems. J Biol Chem. 2010; 285:24299-305.
  • [9]Sakata Y, Arima K, Takai T, Sakurai W, Masumoto K, Yuyama N et al.. The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p 1. J Biol Chem. 2004; 279:5081-7.
  • [10]Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W et al.. An overview of the serpin superfamily. Genome Biol. 2006; 7:216. BioMed Central Full Text
  • [11]Yi D, Xu L, Yan R, Li X. Haemonchuscontortus: cloning and characterization of serpin. Exp Parasitol. 2010; 125:363-70.
  • [12]Molehin AJ, Gobert GN, Driguez P, McManus DP. Characterisation of a secretory serine protease inhibitor (SjB6) from Schistosomajaponicum. Parasit Vectors. 2014; 14:7-330.
  • [13]Molehin AJ, Gobert GN, McManus DP. Serine protease inhibitors of parasitic helminths. Parasitology. 2012; 139:681-95.
  • [14]Zang X, Yazdanbakhsh M, Jiang H, Kanost MR, Maizels RM. A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugiamalayi inhibits human neutrophil serine proteinases. Blood. 1999; 94:1418-28.
  • [15]Morris SR, Sakanari JA. Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J Biol Chem. 1994; 269:27650-6.
  • [16]Nguyen TT, Qasim MA, Morris S, Lu CC, Hill D, Laskowski M et al.. Expression and characterization of elastase inhibitors from the ascarid nematodes Anisakis simplex and Ascaris suum. Mol Biochem Parasitol. 1999; 30(102):79-89.
  • [17]Kobayashi Y, Ishizaki S, Shimakura K, Nagashima Y, Shiomi K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol Res. 2007; 100:1233-41.
  • [18]Kobayashi Y, Ishizaki S, Nagashima Y, Shiomi K. Ani s 1, the major allergen of Anisakis simplex: purification by affinity chromatography and functional expression in Escherichia coli. Parasitol Int. 2008; 57:314-9.
  • [19]Perteguer MJ, Gómez-Puertas P, Cañavate C, Dagger F, Gárate T, Valdivieso E. Ddi1-like protein from Leishmania major is an active aspartyl proteinase. Cell Stress Chaperones. 2013; 18:171-81.
  • [20]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [21]Petersen TN, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Methods. 2011; 8:785-6.
  • [22]Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al.. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985; 150:76-85.
  • [23]Martínez-Sernández V, Mezo M, González-Warleta M, Perteguer MJ, Muiño L, Guitián E et al.. The MF6p/FhHDM-1 major antigen secreted by the trematode parasite Fasciola hepatica is a heme-binding protein. J Biol Chem. 2014; 289:1441-56.
  • [24]Sanmartín ML, Iglesias R, Santamarina MT, Leiro J, Ubeira FM. Anatomical location of phosphorylcholine and other antigens on encysted Trichinella using immunohistochemistry followed by Wheatley’s trichrome stain. Parasitol Res. 1991; 77:301-6.
  • [25]Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins. 2008; 70:611-25.
  • [26]Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci USA. 2002; 99:11079-84.
  • [27]Guex N, Diemand A, Peitsch MC. Protein modelling for all. Trends Biochem Sci. 1999; 24:364-7.
  • [28]Peitsch MC. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996; 24:274-9.
  • [29]Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003; 31:3381-5.
  • [30]Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997; 18:2714-23.
  • [31]Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al.. The Amber biomolecular simulation programs. J Comput Chem. 2005; 26:1668-71.
  • [32]Schreuder HA, de Boer B, Dijkema R, Mulders J, Theunissen HJ, Grootenhuis PD et al.. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994; 1:48-54.
  • [33]Holm L, Kaariainen S, Rosenstrom P, Schenkel A. Searching protein structure databases with DaliLite v. 3. Bioinformatics. 2008; 24:2780-1.
  • [34]Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics. 2001; 159:133-45.
  • [35]Zang X, Maizels RM. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem Sci. 2001; 26:191-7.
  • [36]Gettins PG, Olson ST. Exosite determinants of serpin specificity. J Biol Chem. 2009; 284:20441-5.
  • [37]Dementiev A, Petitou M, Herbert JM, Gettins PG. The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol. 2004; 11:863-7.
  • [38]Rossi EB, Duboscq CL, Kordich LC. Heparin cofactor II, a thrombin inhibitor with a still not clarified physiologic role. Medicina (B Aires). 1999; 59:95-104.
  文献评价指标  
  下载次数:437次 浏览次数:119次