期刊论文详细信息
Orphanet Journal of Rare Diseases
New clinical and molecular insights on Barth syndrome
Amelia Morrone5  Renzo Guerrini8  David N Cooper4  Frédéréc M Vaz1  Enrico Bertini3  Luca Ragni9  Licia Lugli2  Serena Catarzi5  Sabrina Malvagia7  Silvia Funghini7  Maria Alice Donati6  Lorenzo Ferri5 
[1] Department of Clinical Chemistry and Paediatrics, Amsterdam, Netherlands;Neonatology Unit, Department of Mother & Child, University of Modena, Modena, Italy;Department of Neurosciences, Laboratory of Molecular Medicine, Bambino Gesu’ Children’s Research Hospital, Rome, Italy;Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK;Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence and Paediatric Neurology Unit and Laboratories, Meyer Children’s Hospital, Viale Pieraccini n. 24, 50139, Florence, Italy;Metabolic and Muscular Unit, Neuroscience Department, Meyer Childrens’ Hospital, Florence, Italy;Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children’s Hospital, Florence, Italy;IRRCS, Stella Maris, Pisa, Italy;University of Bologna and Azienda Ospedaliera S. Orsola Malpighi, Bologna, Italy
关键词: Metabolic cardiomyopathy;    Gross deletions;    3-methylglutaconic aciduria;    Lactic acidosis;    Metabolic decompensation;    In utero cardiomyopathy;    TAZ gene mutation;    Barth syndrome;   
Others  :  864118
DOI  :  10.1186/1750-1172-8-27
 received in 2012-10-19, accepted in 2013-01-30,  发布年份 2013
PDF
【 摘 要 】

Background

Barth syndrome (BS) is an X-linked infantile-onset cardioskeletal disease characterized by cardiomyopathy, hypotonia, growth delay, neutropenia and 3-methylglutaconic aciduria. It is caused by mutations in the TAZ gene encoding tafazzin, a protein involved in the metabolism of cardiolipin, a mitochondrial-specific phospholipid involved in mitochondrial energy production.

Methods

Clinical, biochemical and molecular characterization of a group of six male patients suspected of having BS. Three patients presented early with severe metabolic decompensation including respiratory distress, oxygen desaturation and cardiomyopathy and died within the first year of life. The remaining three patients had cardiomyopathy, hypotonia and growth delay and are still alive. Cardiomyopathy was detected during pregnancy through a routine check-up in one patient. All patients exhibited 3-methylglutaconic aciduria and neutropenia, when tested and five of them also had lactic acidosis.

Results

We confirmed the diagnosis of BS with sequence analysis of the TAZ gene, and found five new mutations, c.641A>G p.His214Arg, c.284dupG (p.Thr96Aspfs*37), c.678_691del14 (p.Tyr227Trpfs*79), g.8009_16445del8437 and g.[9777_9814del38; 9911-?_14402del] and the known nonsense mutation c.367C>T (p.Arg123Term). The two gross rearrangements ablated TAZ exons 6 to 11 and probably originated by non-allelic homologous recombination and by Serial Replication Slippage (SRS), respectively. The identification of the breakpoints boundaries of the gross deletions allowed the direct detection of heterozygosity in carrier females.

Conclusions

Lactic acidosis associated with 3-methylglutaconic aciduria is highly suggestive of BS, whilst the severity of the metabolic decompensation at disease onset should be considered for prognostic purposes. Mutation analysis of the TAZ gene is necessary for confirming the clinical and biochemical diagnosis in probands in order to identify heterozygous carriers and supporting prenatal diagnosis and genetic counseling.

【 授权许可】

   
2013 Ferri et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725081437388.pdf 956KB PDF download
48KB Image download
57KB Image download
74KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van ’t Veer-Korthof ET, Van der Harten JJ, Sobotka-Plojhar MA: An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983, 62:327-355.
  • [2]Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR, Berthy J, Redfearn SP, Byrne BJ: Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006, 118:e337-346.
  • [3]Kelley RI, Cheatham JP, Clark BJ, Nigro MA, Powell BR, Sherwood GW, Sladky JT, Swisher WP: X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 1991, 119:738-747.
  • [4]Finsterer J, Stollberger C, Fazio G: Neuromuscular disorders in left ventricular hypertrabeculation/noncompaction. Curr Pharm Des 2010, 16:2895-2904.
  • [5]Takeda A, Sudo A, Yamada M, Yamazawa H, Izumi G, Nishino I, Ariga T: Eponym: Barth syndrome. Eur J Pediatr 2011, 170:1365-1367.
  • [6]Makaryan V, Kulik W, Vaz FM, Allen C, Dror Y, Dale DC, Aprikyan AA: The cellular and molecular mechanisms for neutropenia in Barth syndrome. Eur J Haematol 2012, 88:195-209.
  • [7]Barth PG, Valianpour F, Bowen VM, Lam J, Duran M, Vaz FM, Wanders RJ: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A 2004, 126A:349-354.
  • [8]Houtkooper RH, Vaz FM: Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 2008, 65:2493-2506.
  • [9]Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ, Barth PG: Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 2000, 279:378-382.
  • [10]Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M: Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 2011, 100:2184-2192.
  • [11]Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM: The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol Biol Cell 2008, 19:5143-5155.
  • [12]Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 2008, 182:937-950.
  • [13]Koshkin V, Greenberg ML: Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochem J 2000, 347(Pt 3):687-691.
  • [14]Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJ: Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol 2002, 51:634-637.
  • [15]Valianpour F, Mitsakos V, Schlemmer D, Towbin JA, Taylor JM, Ekert PG, Thorburn DR, Munnich A, Wanders RJ, Barth PG, Vaz FM: Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J Lipid Res 2005, 46:1182-1195.
  • [16]Houtkooper RH, Turkenburg M, Poll-The BT, Karall D, Perez-Cerda C, Morrone A, Malvagia S, Wanders RJ, Kulik W, Vaz FM: The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 2009, 1788:2003-2014.
  • [17]Malhotra A, Xu Y, Ren M, Schlame M: Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species. Biochim Biophys Acta 2009, 1791:314-320.
  • [18]Acehan D, Khuchua Z, Houtkooper RH, Malhotra A, Kaufman J, Vaz FM, Ren M, Rockman HA, Stokes DL, Schlame M: Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria. Mitochondrion 2009, 9:86-95.
  • [19]Schlame M, Ren M: Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 2006, 580:5450-5455.
  • [20]Khuchua Z, Yue Z, Batts L, Strauss AW: A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function. Circ Res 2006, 99:201-208.
  • [21]He Q: Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol 2010, 299:H210-216.
  • [22]Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C, Kulik W, Wansapura J, Toth MJ, Strauss A, Khuchua Z: Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 2011, 286:899-908.
  • [23]Soustek MS, Falk DJ, Mah CS, Toth MJ, Schlame M, Lewin AS, Byrne BJ: Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum Gene Ther 2011, 22:865-871.
  • [24]Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D: A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996, 12:385-389.
  • [25]Vaz FM, Houtkooper RH, Valianpour F, Barth PG, Wanders RJ: Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism. J Biol Chem 2003, 278:43089-43094.
  • [26]Gonzalez IL: Barth syndrome: TAZ gene mutations, mRNAs, and evolution. Am J Med Genet A 2005, 134:409-414.
  • [27]Lu B, Kelher MR, Lee DP, Lewin TM, Coleman RA, Choy PC, Hatch GM: Complex expression pattern of the Barth syndrome gene product tafazzin in human cell lines and murine tissues. Biochem Cell Biol 2004, 82:569-576.
  • [28]Xu Y, Zhang S, Malhotra A, Edelman-Novemsky I, Ma J, Kruppa A, Cernicica C, Blais S, Neubert TA, Ren M, Schlame M: Characterization of tafazzin splice variants from humans and fruit flies. J Biol Chem 2009, 284:29230-29239.
  • [29]D’Adamo P, Fassone L, Gedeon A, Janssen EA, Bione S, Bolhuis PA, Barth PG, Wilson M, Haan E, Orstavik KH: The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 1997, 61:862-867.
  • [30]HGMD Professional v.2012.2. 2012. https://portal.biobase-international.com webcite
  • [31]Aradhya S, Lewis R, Bonaga T, Nwokekeh N, Stafford A, Boggs B, Hruska K, Smaoui N, Compton JG, Richard G, Suchy S: Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med 2012, 14:594-603.
  • [32]Moric-Janiszewska E, Markiewicz-Loskot G: Genetic heterogeneity of left-ventricular noncompaction cardiomyopathy. Clin Cardiol 2008, 31:201-204.
  • [33]Barth Syndrome Foundation. http://www.barthsyndrome.org/ webcite
  • [34]Strauss EC, Kobori JA, Siu G, Hood LE: Specific-primer-directed DNA sequencing. Anal Biochem 1986, 154:353-360.
  • [35]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [36]RepeatMasker program: Institute for System Biology. Seattle, WA: ; www.repeatmasker.org webcite
  • [37]PolyPhen: Prediction of functional effect of human nsSNPs. http://genetics.bwh.harvard.edu/pph/ webcite
  • [38]Sunyaev S, Ramensky V, Koch I, Lathe W III, Kondrashov AS, Bork P: Prediction of deleterious human alleles. Hum Mol Genet 2001, 10:591-597.
  • [39]MutPred application tool: Mooney laboratory at the Buck Institute for Age Research. http://mutpred.mutdb.org/ webcite
  • [40]Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P: Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009, 25:2744-2750.
  • [41]SIFT application (Sorting Intolerant from Tolerant). http://sift.bii.a-star.edu.sg/ webcite
  • [42]van Werkhoven MA, Thorburn DR, Gedeon AK, Pitt JJ: Monolysocardiolipin in cultured fibroblasts is a sensitive and specific marker for Barth Syndrome. J Lipid Res 2006, 47:2346-2351.
  • [43]Cooper DN, Bacolla A, Ferec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM: On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011, 32:1075-1099.
  • [44]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [45]Batzer MA, Deininger PL: Alu repeats and human genomic diversity. Nat Rev Genet 2002, 3:370-379.
  • [46]Mei D, Lewis R, Parrini E, Lazarou LP, Marini C, Pilz DT, Guerrini R: High frequency of genomic deletions–and a duplication–in the LIS1 gene in lissencephaly: implications for molecular diagnosis. J Med Genet 2008, 45:355-361.
  • [47]Singh HR, Yang Z, Siddiqui S, Pena LS, Westerfield BH, Fan Y, Towbin JA, Vatta M: A novel Alu-mediated Xq28 microdeletion ablates TAZ and partially deletes DNL1L in a patient with Barth syndrome. Am J Med Genet A 2009, 149A:1082-1085.
  • [48]Cosson L, Toutain A, Simard G, Kulik W, Matyas G, Guichet A, Blasco H, Maakaroun-Vermesse Z, Vaillant MC, Le Caignec C: Barth syndrome in a female patient. Mol Genet Metab 2012, 106:115-120.
  • [49]Gu W, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4. BioMed Central Full Text
  • [50]Lee JA, Carvalho CM, Lupski JR: A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007, 131:1235-1247.
  • [51]Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA: Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 2005, 26:205-213.
  • [52]Cooper DN, Krawczak M: Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum Genet 1991, 87:409-415.
  • [53]Claypool SM, McCaffery JM, Koehler CM: Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J Cell Biol 2006, 174:379-390.
  • [54]Donati MA, Malvagia S, Pasquini E, Morrone A, La Marca G, Garavaglia B, Toniolo D, Zammarchi E: Barth syndrome presenting with acute metabolic decompensation in the neonatal period. J Inherit Metab Dis 2006, 29:684.
  • [55]Yen TY, Hwu WL, Chien YH, Wu MH, Lin MT, Tsao LY, Hsieh WS, Lee NC: Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review. Eur J Pediatr 2008, 167:941-944.
  • [56]Schlame M, Kelley RI, Feigenbaum A, Towbin JA, Heerdt PM, Schieble T, Wanders RJ, DiMauro S, Blanck TJ: Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 2003, 42:1994-1999.
  • [57]Brady AN, Shehata BM, Fernhoff PM: X-linked fetal cardiomyopathy caused by a novel mutation in the TAZ gene. Prenat Diagn 2006, 26:462-465.
  • [58]Steward CG, Newbury-Ecob RA, Hastings R, Smithson SF, Tsai-Goodman B, Quarrell OW, Kulik W, Wanders R, Pennock M, Williams M: Barth syndrome: an X-linked cause of fetal cardiomyopathy and stillbirth. Prenat Diagn 2010, 30:970-976.
  文献评价指标  
  下载次数:0次 浏览次数:7次