| Virology Journal | |
| Inhibition of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs | |
| Yaosheng Chen1  Xiaohong Liu1  Delin Mo1  Zuyong He1  Liangliang Wang1  Jintao Gao1  Qiwei Wang1  Shuqi Xiao1  | |
| [1] Pig Improving and Breeding Project Technology Research Exploitation Center of Guangdong, Guangzhou 510006, P. R. China | |
| 关键词: Lentivirus; artificial miRNA; RNAi; Highly pathogenic PRRSV; | |
| Others : 1155759 DOI : 10.1186/1743-422X-8-491 |
|
| received in 2011-09-01, accepted in 2011-11-01, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) has caused large economic losses in swine industry in recent years. However, current antiviral strategy could not effectively prevent and control this disease. In this research, five artificial microRNAs (amiRNAs) respectively targeted towards ORF5 (amirGP5-243, -370) and ORF6 (amirM-82, -217,-263) were designed and incorporated into a miRNA-based vector that mimics the backbone of murine miR-155 and permits high expression of amiRNAs in a GFP fused form mediated by RNA Pol II promoter CMV.
Results
It was found that amirGP5-370 could effectively inhibit H-PRRSV replication. The amirM-263-M-263, which was a dual pre-amiRNA expression cassette where two amirM-263s were chained, showed stronger virus inhibitory effects than single amirM-263. H-PRRSV replication was inhibited up to 120 hours in the MARC-145 cells which were stably transduced by recombinant lentiviruses (Lenti-amirGP5-370, -amirM-263-M-263). Additionally, efficacious dose of amirGP5-370 and amirM-263 expression did not trigger the innate interferon response.
Conclusions
Our study is the first attempt to suppress H-PRRSV replication in MARC-145 cells through vector-based and lentiviral mediated amiRNAs targeting GP5 or M proteins coding sequences of PRRSV, which indicated that artificial microRNAs and recombinant lentiviruses might be applied to be a new potent anti-PRRSV strategy.
【 授权许可】
2011 Xiao et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150407120028167.pdf | 6043KB | ||
| Figure 8. | 88KB | Image | |
| Figure 7. | 33KB | Image | |
| Figure 6. | 112KB | Image | |
| Figure 5. | 42KB | Image | |
| Figure 4. | 38KB | Image | |
| Figure 3. | 90KB | Image | |
| Figure 2. | 59KB | Image | |
| Figure 1. | 12KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Xiao S, Jia J, Mo D, Wang Q, Qin L, He Z, Zhao X, Huang Y, Li A, Yu J, et al.: Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 2010, 5:e11377.
- [2]Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ: Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 2005, 227:385-392.
- [3]Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ: Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 1993, 192:62-72.
- [4]Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D: Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Archives of virology 2000, 145:659-688.
- [5]Delputte PL, Meerts P, Costers S, Nauwynck HJ: Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages. Vet Immunol Immunopathol 2004, 102:179-188.
- [6]Snijder EJ, Dobbe JC, Spaan WJ: Heterodimerization of the two major envelope proteins is essential for arterivirus infectivity. Journal of virology 2003, 77:97-104.
- [7]Fernandez A, Suarez P, Castro JM, Tabares E, Diaz-Guerra M: Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death. Virus Res 2002, 83:103-118.
- [8]Verheije MH, Welting TJ, Jansen HT, Rottier PJ, Meulenberg JJ: Chimeric arteriviruses generated by swapping of the M protein ectodomain rule out a role of this domain in viral targeting. Virology 2002, 303:364-373.
- [9]Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB: Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol 2002, 76:4312-4320.
- [10]Van Breedam W, Van Gorp H, Zhang JQ, Crocker PR, Delputte PL, Nauwynck HJ: The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS pathogens 2010, 6:e1000730.
- [11]Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, et al.: Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE 2007, 2:e526.
- [12]Xiao S, Mo D, Wang Q, Jia J, Qin L, Yu X, Niu Y, Zhao X, Liu X, Chen Y: Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics 2010, 11:544. BioMed Central Full Text
- [13]Cogoni C, Romano N, Macino G: Suppression of gene expression by homologous transgenes. Antonie van Leeuwenhoek 1994, 65:205-209.
- [14]Sharp PA, Zamore PD: Molecular biology. RNA interference. Science (New York, NY) 2000, 287:2431-2433.
- [15]Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J: RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences of the United States of America 2003, 100:2718-2723.
- [16]Kanda T, Kusov Y, Yokosuka O, Gauss-Muller V: Interference of hepatitis A virus replication by small interfering RNAs. Biochemical and biophysical research communications 2004, 318:341-345.
- [17]Christopher-Hennings J, Nelson EA, Hines RJ, Nelson JK, Swenson SL, Zimmerman JJ, Chase CL, Yaeger MJ, Benfield DA: Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest 1995, 7:456-464.
- [18]Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, et al.: Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA (New York, NY) 2003, 9:493-501.
- [19]Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, et al.: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature genetics 2003, 33:401-406.
- [20]Manjunath N, Wu H: Subramanya S, Shankar P: Lentiviral delivery of short hairpin RNAs. Advanced drug delivery reviews 2009, 61:732-745.
- [21]Liu YP, Haasnoot J, ter Brake O, Berkhout B, Konstantinova P: Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic acids research 2008, 36:2811-2824.
- [22]Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B: Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic acids research 2004, 32:1154-1158.
- [23]Qu J, Ye J, Fang R: Artificial microRNA-mediated virus resistance in plants. Journal of virology 2007, 81:6690-6699.
- [24]Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, et al.: Second-generation shRNA libraries covering the mouse and human genomes. Nature genetics 2005, 37:1281-1288.
- [25]Liu YP, von Eije KJ, Schopman NC, Westerink JT, ter Brake O, Haasnoot J, Berkhout B: Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009, 17:1712-1723.
- [26]Daly C, Reich NC: Double-stranded RNA activates novel factors that bind to the interferon-stimulated response element. Molecular and cellular biology 1993, 13:3756-3764.
- [27]Kenworthy R, Lambert D, Yang F, Wang N, Chen Z, Zhu H, Zhu F, Liu C, Li K, Tang H: Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic acids research 2009, 37:6587-6599.
- [28]Kimman TG, Cornelissen LA, Moormann RJ, Rebel JM, Stockhofe-Zurwieden N: Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009, 27:3704-3718.
- [29]Huang J, Jiang P, Li Y, Xu J, Jiang W, Wang X: Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells. Vet Microbiol 2006, 115:302-310.
- [30]He YX, Hua RH, Zhou YJ, Qiu HJ, Tong GZ: Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs. Antiviral Res 2007, 74:83-91.
- [31]Li G, Huang J, Jiang P, Li Y, Jiang W, Wang X: Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region. Virus Genes 2007, 35:673-679.
- [32]Li G, Jiang P, Li Y, Wang X, Huang J, Du Y, Zeshan B: Effective suppression of replication of porcine reproductive and respiratory syndrome virus by adenovirus-mediated small interfering RNAs targeting ORF1b, 5 and 7 genes. J Virol Methods 2009, 157:40-46.
- [33]Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, Cao J, Wu B, Chen N, Zeshan B: Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral research 2009, 82:157-165.
- [34]Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, Fei L, Liu Y, Zuo X, Yang F, et al.: Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006, 80:3559-3566.
- [35]Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL, Ferry N, Weinberg MS, Arbuthnot P: Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 2006, 13:411-421.
- [36]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
- [37]Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441:537-541.
- [38]Giering JC, Grimm D, Storm TA, Kay MA: Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008, 16:1630-1636.
- [39]Grimm D, Kay MA: Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? The Journal of clinical investigation 2007, 117:3633-3641.
- [40]Rao DD, Senzer N, Cleary MA, Nemunaitis J: Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer gene therapy 2009, 16:807-809.
- [41]Wiznerowicz M, Szulc J, Trono D: Tuning silence: conditional systems for RNA interference. Nature methods 2006, 3:682-688.
- [42]Xiao S, Wang Q, Jia J, Cong P, Mo D, Yu X, Qin L, Li A, Niu Y, Zhu K, et al.: Proteome changes of lungs artificially infected with H-PRRSV and N-PRRSV by two-dimensional fluorescence difference gel electrophoresis. Virol J 2010, 7:107. BioMed Central Full Text
- [43]Liu YP, Haasnoot J, Berkhout B: Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic acids research 2007, 35:5683-5693.
PDF