期刊论文详细信息
Molecular Neurodegeneration
Normal cognition in transgenic BRI2-Aβ mice
Christopher Janus2  Todd Golde2  David R Borchelt2  Dennis W Dickson1  Amelia March2  Amanda Hanna1  Paramita Chakrabarty2  Jungsu Kim3 
[1] Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA;Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Dr., Box 100159, Gainesville, FL 32610, USA;Current address: Department of Neurology, Washington University School of Medicine, 660 S. Euclid Box 811, St. Louis, MO 63110, USA
关键词: Cognition;    Amyloid plaques;    Amyloid-β;    Mouse models;    Alzheimer’s disease;   
Others  :  863266
DOI  :  10.1186/1750-1326-8-15
 received in 2013-02-11, accepted in 2013-05-08,  发布年份 2013
PDF
【 摘 要 】

Background

Recent research in Alzheimer’s disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models.

Results

Using established behavioral tests that reveal deficits in APP transgenic models, BRI2-Aβ1-42 mice showed completely intact cognitive performance at ages both pre and post amyloid plaque formation. BRI2-Aβ mice producing Aβ1-40 or both peptides were also cognitively intact.

Conclusions

These data indicate that high levels of Aβ1-40 or Aβ1-42, or both produced in the absence of APP overexpression do not reproduce memory deficits observed in APP transgenic mouse models. This outcome is supportive of recent data suggesting that APP processing derivatives or the overexpression of full length APP may contribute to cognitive decline in APP transgenic mouse models. Alternatively, Aβ aggregates may impact cognition by a mechanism that is not fully recapitulated in these BRI2-Aβ mouse models.

【 授权许可】

   
2013 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725033311984.pdf 1689KB PDF download
23KB Image download
46KB Image download
108KB Image download
31KB Image download
148KB Image download
【 图 表 】

【 参考文献 】
  • [1]Eriksen JL, Janus CG: Plaques, Tangles, and Memory Loss in Mouse Models of Neurodegeneration. Behavioral Genetics 2007, 37:79-100.
  • [2]Janus C, Chishti MA, Westaway D: Transgenic mouse models of Alzheimer's disease. Biochim Biophys Acta 2000, 1502:63-75.
  • [3]Ashe KH: Mechanisms of memory loss in Abeta and tau mouse models. Biochem Soc Trans 2005, 33:591-594.
  • [4]Higgins GA, Jacobsen H: Transgenic mouse models of Alzheimer's disease: phenotype and application. Behav Pharmacol 2003, 14:419-438.
  • [5]Deyts C, Vetrivel KS, Das S, Shepherd YM, Dupre DJ, Thinakaran G, Parent AT: Novel GalphaS-protein signaling associated with membrane-tethered amyloid precursor protein intracellular domain. J Neurosci 2012, 32:1714-1729.
  • [6]Tamayev R, Matsuda S, Arancio O, D'Adamio L: β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia. EMBO Mol Med 2012, 4:171-179.
  • [7]McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P: Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 2005, 47:191-199.
  • [8]Choi SI, Vidal R, Frangione B, Levy E: Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J 2004, 18:373-375.
  • [9]Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J: Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 2001, 276:21562-21570.
  • [10]Hanna A, Horne P, Yager D, Eckman C, Eckman E, Janus C: Amyloid beta and impairment in multiple memory systems in older transgenic APP TgCRND8 mice. Genes Brain Behav 2009, 8:676-684.
  • [11]Janus C: Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn Mem 2004, 11:337-346.
  • [12]Janus C, D'Amelio S, Amitay O, Chishti MA, Strome R, Fraser P, Carlson GA, Roder JC, St George-Hyslop P, Westaway D: Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging 2000, 21:541-549.
  • [13]Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J: A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 2000, 408:979-982.
  • [14]Janus C, Janus M, Roder J: Spatial exploration in transgenic mice expressing human beta-S100. Neurobiol Learn Mem 1995, 64:58-67.
  • [15]Royce JR: On the construct validity of open-field measures. Psychol Bull 1977, 84:1098-1106.
  • [16]Jones BJ, Roberts DJ: The quantitative measurments of motor incoordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 1967, 20:302-304.
  • [17]Norreel JC, Jamon M, Riviere G, Passage E, Fontes M, Clarac F: Behavioural profiling of a murine Charcot-Marie-Tooth disease type 1A model. Eur J Neurosci 2001, 13:1625-1634.
  • [18]Fanselow MS: Factors Governing One-Trial Contextual Conditioning. Anim Learn Behav 1990, 18:264-270.
  • [19]LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM: The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 1990, 10:1062-1069.
  • [20]Fanselow MS: From contextual fear to a dynamic view of memory systems. Trends Cogn Sci 2010, 14:7-15.
  • [21]Moser MB, Moser EI, Forrest E, Andersen P, Morris RG: Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci U S A 1995, 92:9697-9701.
  • [22]Morris RG, Frey U: Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci 1997, 352:1489-1503.
  • [23]Welzl H, D'Adamo P, Lipp HP: Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 2001, 125:205-213.
  • [24]Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, Dickson DW, Golde T, McGowan E: Abeta40 inhibits amyloid deposition in vivo. J Neurosci 2007, 27:627-633.
  • [25]Hanna A, Iremonger K, Das P, Dickson D, Golde T, Janus C: Age-related increase in amyloid plaque burden is associated with impairment in conditioned fear memory in CRND8 mouse model of amyloidosis. Alzheim Res Ther 2012, 4:21. BioMed Central Full Text
  • [26]Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H: Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem 2002, 277:22768-22780.
  • [27]Ashe KH, Zahs KR: Probing the biology of Alzheimer's disease in mice. Neuron 2010, 66:631-645.
  • [28]Amaral FA, Lemos MT, Dong KE, Bittencourt MF, Caetano AL, Pesquero JB, Viel TA, Buck HS: Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-beta 1–40 peptide in mice. Neuropeptides 2010, 44:93-97.
  • [29]Burgos-Ramos E, Puebla-Jimenez L, Arilla-Ferreiro E: Minocycline provides protection against beta-amyloid(25–35)-induced alterations of the somatostatin signaling pathway in the rat temporal cortex. Neuroscience 2008, 154:1458-1466.
  • [30]Chambon C, Wegener N, Gravius A, Danysz W: Behavioural and cellular effects of exogenous amyloid-beta peptides in rodents. Behav Brain Res 2011, 225:623-641.
  • [31]Malm T, Ort M, Tahtivaara L, Jukarainen N, Goldsteins G, Puolivali J, Nurmi A, Pussinen R, Ahtoniemi T, Miettinen TK: Beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S A 2006, 103:8852-8857.
  • [32]Dineley KT, Hogan D, Zhang WR, Taglialatela G: Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiol Learn Mem 2007, 88:217-224.
  • [33]Corcoran KA, Lu Y, Turner RS, Maren S: Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer's disease. Learn Mem 2002, 9:243-252.
  • [34]Janus C, Welzl H, Hanna A, Lovasic L, Lane N, St George-Hyslop P, Westaway D: Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiol Aging 2004, 25:1213-1219.
  • [35]Owen EH, Logue SF, Rasmussen DL, Wehner JM: Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 1997, 80:1087-1099.
  • [36]Balogh SA, Wehner JM: Inbred mouse strain differences in the establishment of long-term fear memory. Behav Brain Res 2003, 140:97-106.
  • [37]Crabbe JC, Cotnam CJ, Cameron AJ, Schlumbohm JP, Rhodes JS, Metten P, Wahlsten D: Strain differences in three measures of ethanol intoxication in mice: the screen, dowel and grip strength tests. Genes Brain Behav 2003, 2:201-213.
  • [38]Crabbe JC, Wahlsten D, Dudek BC: Genetics of mouse behavior: interactions with laboratory environment. Science 1999, 284:1670-1672.
  • [39]Janus C, Welzl H: Mouse Models of Neurodegenerative Diseases – Criteria and General Methodology. In Mouse Models for Drug Discovery. Edited by Wiles M, Proetzel G. New York: Humana Press; 2010.
  • [40]Einstein G: To each her own: sexual dimorphisms in Alzheimer's disease. Neurobiol Aging 1999, 20:439-440.
  • [41]Ott BR: Cognition and behavior in patients with Alzheimer's disease. J Gend Specif Med 1999, 2:63-69.
  • [42]Webber KM, Casadesus G, Atwood CS, Bowen RL, Perry G, Smith MA: Gonadotropins: a cohesive gender-based etiology of Alzheimer disease. Mol Cell Endocrinol 2007, 260–262:271-275.
  • [43]Callahan MJ, Lipinski WJ, Bian F, Durham RA, Pack A, Walker LC: Augmented senile plaque load in aged female beta-amyloid precursor protein-transgenic mice. Am J Pathol 2001, 158:1173-1177.
  • [44]Maynard CJ, Cappai R, Volitakis I, Cherny RA, Masters CL, Li QX, Bush AI: Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer beta-amyloid pathology. J Inorg Biochem 2006, 100:952-962.
  • [45]Jonasson Z: Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev 2005, 28:811-825.
  • [46]Duvoisin RM, Villasana L, Pfankuch T, Raber J: Sex-dependent cognitive phenotype of mice lacking mGluR8. Behav Brain Res 2010, 209:21-26.
  • [47]Slack MD, Hewitt KN, Ebling FJ, Cassaday HJ: Sex differences in emotionality in C3H/HeH mice, with hypogonadal mutant to distinguish activational effects of gonadal hormones. Physiol Behav 2009, 96:30-36.
  • [48]Arters J, Hohmann CF, Mills J, Olaghere O, Berger-Sweeney J: Sexually dimorphic responses to neonatal basal forebrain lesions in mice: I. Behavior and neurochemistry. J Neurobiol 1998, 37:582-594.
  • [49]Benice TS, Rizk A, Kohama S, Pfankuch T, Raber J: Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 2006, 137:413-423.
  • [50]Berger-Sweeney J, Arnold A, Gabeau D, Mills J: Sex differences in learning and memory in mice: effects of sequence of testing and cholinergic blockade. Behav Neurosci 1995, 109:859-873.
  • [51]Imwalle DB, Bateman HL, Wills A, Honda S, Harada N, Rissman EF: Impairment of spatial learning by estradiol treatment in female mice is attenuated by estradiol exposure during development. Horm Behav 2006, 50:693-698.
  • [52]Melnikova T, Fromholt S, Kim H, Lee D, Xu G, Price A, Moore BD, Golde TE, Felsenstein KM, Savonenko A, Borchelt DR: Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci 2013. 10.1523/JNEUROSCI.4251-12.2013
  • [53]Portelius E, Olsson M, Brinkmalm G, Ruetschi U, Mattsson N, Andreasson U, Gobom J, Brinkmalm A, Holtta M, Blennow K, Zetterberg H: Mass Spectrometric Characterization of Amyloid-beta Species in the 7PA2 Cell Model of Alzheimer's Disease. J Alzheimers Dis 2013, 33(1):85-93.
  • [54]Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y, Ni K, Matsuoka N: Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci 2012, 32:2037-2050.
  • [55]Tamayev R, D'Adamio L: Inhibition of gamma-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia. Mol Neurodegener 2012, 7:19. BioMed Central Full Text
  • [56]Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA: Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat Neurosci 2000, 3:460-464.
  • [57]O'Hare E, Scopes DI, Treherne JM, Monaghan J, Palmer PM, Amijee H, Kim EM: Novel anti-inflammatory compound SEN1176 alleviates behavioral deficits induced following bilateral intrahippocampal injection of aggregated amyloid-beta(1)(−)(4)(2). J Alzheimers Dis 2011, 25:219-229.
  • [58]Lawlor PA, Bland RJ, Das P, Price RW, Holloway V, Smithson L, Dicker BL, During MJ, Young D, Golde TE: Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels. Mol Neurodegener 2007, 2:11. BioMed Central Full Text
  • [59]Broersen K, Rousseau F, Schymkowitz J: The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation? Alzheim Res Ther 2010, 2:12. BioMed Central Full Text
  • [60]Hurst JL, West RS: Taming anxiety in laboratory mice. Nat Methods 2010, 7(10):825-826.
  • [61]McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R: The use of behavioral test batteries: effects of training history. Physiol Behav 2001, 73:705-717.
  • [62]Wolfer DP, Lipp HP: A new computer program for detailed off-line analysis of swimming navigation in the Morris water maze. J Neurosci Methods 1992, 41:65-74.
  • [63]Blanchard RJ, Blanchard DC: Crouching as an index of fear. J Comp Physiol Psychol 1969, 67:370-375.
  • [64]Yue M, Hanna A, Wilson J, Roder H, Janus C: Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 2011, 32:590-603.
  • [65]Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C, Zubair AC, Dickson D, Golde TE, Das P: Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J 2010, 24:548-559.
  • [66]Tabachnick BG, Fidell LS: Using Multivariate Statistics. 2nd edition. New York: Harper Collins Publishers Inc; 1989.
  • [67]Levine TR, Hullett CR: Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum Commun Res 2002, 28:612-625.
  • [68]Cohen J: Statistical Power Analysis for the Behavioural Sciences. Hillsdale, New Jersey: Lawrence Erlbaum Associates Inc; 1988.
  文献评价指标  
  下载次数:0次 浏览次数:4次