期刊论文详细信息
Radiation Oncology
A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography
Pushkar Desai1  Blas Caroprese1  Christopher F Njeh2 
[1] East Texas Medical Center, Radiation Oncology Department, ETMC_Cancer Institute, 721 Clinic Drive, Tyler 75701, TX, USA;Physics Department, Queensland University of Technology, Brisbane, Australia
关键词: Computed radiography;    Electronic portal images device;    Linear accelerator;    Light field;    Radiation field;    Quality assurance;   
Others  :  1160867
DOI  :  10.1186/1748-717X-7-49
 received in 2011-12-30, accepted in 2012-03-27,  发布年份 2012
PDF
【 摘 要 】

Background

The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field.

Method

A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system.

Results

Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance.

Conclusion

The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence.

【 授权许可】

   
2012 Njeh et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150411082546552.pdf 5758KB PDF download
Figure 11. 46KB Image download
Figure 10. 71KB Image download
Figure 9. 43KB Image download
Figure 8. 32KB Image download
Figure 7. 17KB Image download
Figure 6. 41KB Image download
Figure 5. 46KB Image download
Figure 4. 34KB Image download
Figure 3. 33KB Image download
Figure 2. 53KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Hendee WR, Ibbott GS, Hendee EG: Radiation therapy physics. 3rd edition. New Jersey: John Wiley and Sons, Inc; 2005.
  • [2]Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, et al.: Comprehensive QA for radiation oncology: report of AAPM Radiation therapy committee task group 40. Med Phys 1994, 21(4):581-618.
  • [3]Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al.: Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009, 36(9):4197-212.
  • [4]Dunscombe P, Humphreys S, Leszczynski K: A test tool for the visual verification of light and radiation fields using film or an electronic portal imaging device. Med Phys 1999, 26(2):239-43.
  • [5]Luchka K, Chen D, Shalev S, Gluhchev G, Rajapakshe R: Assessing radiation and light field congruence with a video based electronic portal imaging device. Med Phys 1996, 23(7):1245-52.
  • [6]Kirby MC: A multipurpose phantom for use with electronic portal imaging devices. Phys Med Biol 1995, 40(2):323-34.
  • [7]Ho A, Thomadsen B, Paliwal B: On visual interpretation of light localization/radiation field coincidence films. Med Phys 1995, 22(2):237-8.
  • [8]Peace T, Subramanian B, Ravindran P: An experimental study on using a diagnostic computed radiography system as a quality assurance tool in radiotherapy. Australas Phys Eng Sci Med 2008, 31(3):226-34.
  • [9]Soh HS, Ung NM, Ng KH: The characteristics of Fuji IP Cassette Type PII and application for radiation oncology quality assurance tests and portal imaging. Australas Phys Eng Sci Med 2008, 31(2):146-50.
  • [10]Monti AF, Frigerio M, Frigerio G: Visual verification of linac light and radiation fields coincidence. Med Dosim 2003, 28(2):91-3.
  • [11]Prisciandaro JI, Herman MG, Kruse JJ: Utilizing an electronic portal imaging device to monitor light and radiation field congruence. J Appl Clin Med Phys 2003, 4(4):315-20.
  • [12]Das IJ, Cao M, Cheng CW, Misic V, Scheuring K, Schule E, et al.: A quality assurance phantom for electronic portal imaging devices. J Appl Clin Med Phys 2011, 12(2):3350.
  • [13]Menon GV, Sloboda RS: Quality assurance measurements of a-Si EPID performance. Med Dosim 2004, 29(1):11-7.
  • [14]Winkler P, Hefner A, Georg D: Dose-response characteristics of an amorphous silicon EPID. Med Phys 2005, 32(10):3095-105.
  • [15]Tyner E, McClean B, afWetterstedt S, McCavana P: Experimental investigation of the response of an a-Si EPID to an unflattened photon beam from an Elekta Precise linear accelerator. Med Phys 2009, 36(4):1318-29.
  • [16]Wilenzick RM, Merritt CR, Balter S: Megavoltage portal films using computed radiographic imaging with photostimulable phosphors. Med Phys 1987, 14(3):389-92.
  • [17]Whittington R, Bloch P, Hutchinson D, Bjarngard BE: Verification of prostate treatment setup using computed radiography for portal imaging. J Appl Clin Med Phys 2002, 3(2):88-96.
  • [18]Rowlands JA: The physics of computed radiography. Phys Med Biol 2002, 47(23):R123-66.
  • [19]Baker SJ, Budgell GJ, MacKay RI: Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration. Phys Med Biol 2005, 50(7):1377-92.
  • [20]Budgell GJ, Zhang R, Mackay RI: Daily monitoring of linear accelerator beam parameters using an amorphous silicon EPID. Phys Med Biol 2007, 52(6):1721-33.
  • [21]Cremers F, Frenzel T, Kausch C, Albers D, Schonborn T, Schmidt R: Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements. Med Phys 2004, 31(5):985-96.
  文献评价指标  
  下载次数:168次 浏览次数:29次