期刊论文详细信息
Particle and Fibre Toxicology
The midgut of Aedes albopictus females expresses active trypsin-like serine peptidases
Jose Batista De Jesus2  Geovane Dias-Lopes3  Constança Britto3  Nathália Pinho de Souza1  Andre Borges-Veloso3  Patricia Cuervo1  Leonardo Saboia-Vahia3 
[1] Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil;Universidade Federal de São João del Rei, São João del Rei, MG, Brazil;Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
关键词: Mass spectrometry;    Two-dimensional electrophoresis;    Proteomics;    Zymography;    Midgut;    Culicidae;    Aedes albopictus;   
Others  :  1183578
DOI  :  10.1186/1756-3305-7-253
 received in 2013-08-26, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

Aedes albopictus is widely distributed across tropical and sub-tropical regions and is associated with the transmission of several arboviruses. Although this species is increasingly relevant to public health due its ability to successfully colonize both urban and rural habitats, favoring the dispersion of viral infections, little is known about its biochemical traits, with all assumptions made based on studies of A. aegypti. In previous studies we characterized the peptidase profile of pre-imaginal stages of A. albopictus and we reported the first proteomic analysis of the midgut from sugar-fed females of this insect species.

Methods

In the present work, we further analyzed the peptidase expression in the midgut of sugar-fed females using 1DE-substrate gel zymography, two-dimensional electrophoresis (2DE), mass spectrometry (MS), and protein identification based on similarity.

Results

The combination of zymography, in solution assays using fluorescent substrates and 2DE-MS/MS allowed us to identify the active serine peptidase “fingerprint” in the midgut of A. albopictus females. Zymographic analysis revealed a proteolytic profile composed of at least 13 bands ranging from ~25 to 250 kDa, which were identified as trypsin-like serine peptidases by using specific inhibitors of this class of enzymes. Concomitant use of the fluorogenic substrate Z-Phe-Arg-AMC and trypsin-like serine protease inhibitors corroborated the zymographic findings. Our proteomic approach allowed the identification of two different trypsin-like serine peptidases and one chymotrypsin in protein spots of the alkaline region in 2DE map of the A. albopictus female midgut. Identification of these protein coding genes was achieved by similarity to the A. aegypti genome sequences using Mascot and OMSSA search engines.

Conclusion

These results allowed us to detect, identify and characterize the expression of active trypsin-like serine peptidases in the midgut of sugar-fed A. albopictus females. In addition, proteomic analysis allowed us to confidently assign the expression of two trypsin genes and one chymotrypsin gene to the midgut of this mosquito. These results contribute to the gene annotation in this species of unknown genome and represent a small but important step toward the protein-level functional and localization assignment of trypsin-like serine peptidase genes in the Aedes genus.

【 授权许可】

   
2014 Saboia-Vahia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150520081955324.pdf 954KB PDF download
Figure 5. 87KB Image download
Figure 4. 75KB Image download
Figure 3. 50KB Image download
Figure 2. 51KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wong PS, Li MZ, Chong CS, Ng LC, Tan CH: Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 2013, 1:7. e2348
  • [2]WHO: Yellow Fever Factsheet. Geneva: World Health Organization; 2001.
  • [3]Hsieh YH, Chen CW: Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 2009, 14:628-638.
  • [4]Angelini R, Finarelli AC, Angelini P, Po C, Petropulacos K, Macini P, Fiorentini C, Fortuna C, Venturi G, Romi R, Majori G, Nicoletti L, Rezza G, Cassone A: An outbreak of chikungunya fever in the province of Ravenna. Italy Euro Surveill 2007, 12:E070906.1.
  • [5]Gomes Ade C, Bitencourt MD, Natal D, Pinto PL, Mucci LF, de Paula MB, Urbinatti PR, Barata JM: Aedes albopictus in rural zone of Brazil and its implication in the wild yellow fever transmission. Rev Saude Publica 1999, 33:95-97.
  • [6]Knudsen AB: Global distribution and continuing spread of Aedes albopictus. Parassitologia 1995, 37:91-97.
  • [7]Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, Parham PE: The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Glob Health 2013, 107:224-241.
  • [8]Borges-Veloso A, Saboia-Vahia L, Cuervo P, Pires RC, Britto C, Fernandes N, d’Avila-Levy CM, De Jesus JB: Proteolytic profiling and comparative analyses of active trypsin-like serine peptidases in preimaginal stages of Culex quinquefasciatus. Parasit Vectors 2012, 5:123.
  • [9]Bartoszewska M, Williams C, Kikhney A, Opaliński Ł, van Roermund CW, de Boer R, Veenhuis M, van der Klei IJ: Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. J Biol Chem 2012, 287:27380-27395.
  • [10]Weidlich S, Huster J, Hoffmann KH, Woodring J: Environmental control of trypsin secretion in the midgut of the two-spotted field cricket, Gryllus bimaculatus. J Insect Physiol 2012, 58:1477-1484.
  • [11]Wolfson JL, Murdock LL: Diversity in digestive proteinase activity among insects. J Chem Ecol 1990, 16:1089-1102.
  • [12]Felix CR, Betschart B, Billingsley PF, Freyvogel TA: Post-feeding induction of trypsin in the midgut of Aedes aegypti is separable into two cellular phases. Insect Bioch 1991, 21:197-203.
  • [13]Barillas-Mury C, Wells MA: Cloning and sequencing of the blood meal-induced late trypsin gene from the mosquito Aedes aegypti and characterization of the upstream regulatory region. Insect Mol Biol 1993, 2:7-12.
  • [14]Kalhok SE, Tabak LM, Prosser DE, Brook W, Downe AE, White BN: Isolation, sequencing and characterization of two cDNA clones coding for trypsin-like enzymes from the midgut of Aedes aegypti. Insect Mol Biol 1993, 2:71-79.
  • [15]Jiang Q, Hall M, Noriega FG, Wells M: cDNA cloning and pattern of expression of an adult, femalespecific chymotrypsin from Aedes aegypti midgut. Insect Biochem Mol Biol 1997, 27:283-289.
  • [16]Bian G, Raikhel AS, Zhu J: Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochem Mol Biol 2008, 38:190-200.
  • [17]Polgár L: The catalytic triad of serine peptidases. Cell Mol Life Sci 2005, 62:2161-2172.
  • [18]Rawlings ND, Barrett AJ: Families of serine peptidases. Meth Enzymol 1994, 244:19-61.
  • [19]Craik CS, Largman C, Fletcher T, Roczniak S, Barr PJ, Fletterick R, Rutter WJ: Redesigning trypsin: alteration of substrate specificity. Science 1985, 228:291-297.
  • [20]Terra WR, Ferreira C: Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 1994, 109:1-62.
  • [21]Barrett AJ: Bioinformatics of proteases in the MEROPS database. Curr Opin Drug Discov Devel 2004, 7:334-341.
  • [22]Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR: The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 2009, 18:33-44.
  • [23]Noriega FG, Pennington JE, Barillas-Mury C, Wang XY, Wells MA: Aedes aegypti midgut early trypsin is post-transcriptionally regulated by blood feeding. Insect Mol Biol 1996, 5:25-29.
  • [24]Wu DD, Guo-Dong W, Irwin DM, Zhang YP: A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in mosquito. Mol Biol Evol 2009, 26:2333-2341.
  • [25]Borovsky D, Schlein Y: Quantitative determination of trypsin-like and chymotrypsin like enzymes in insects. Arch Insect Biochem Physiol 1988, 8:249-260.
  • [26]Gorman MJ, Paskewitz SM: Serine proteases as mediators of mosquito imune responses. Insect Biochem Mol Biol 2001, 31:257-262.
  • [27]Noriega FG, Wells MA: A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 1999, 45:613-620.
  • [28]Shahabuddin M, Kaslow DC: Biology of the development of Plasmodium in the mosquito midgut: a molecular and cellular view. Bull Inst Pasteur 1994, 92:119-132.
  • [29]Telleria EL, Araújo APO, Secundino NF, d’Avila-Levy CM, Traub-Csekö YM: Trypsin-like serine proteases in Lutzomyia longipalpis – expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One 2010, 5:e10697.
  • [30]Shahabuddin M, Lemos FJ, Kaslow DC, Jacobs-Lorena M: Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun 1996, 64:739-743.
  • [31]Broadwell AH, Baumann P: Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Appl Environ Microbiol 1987, 53:1333-1337.
  • [32]Lau YS, Sulaiman S, Othman H: The effectiveness of Trypsin Modulating Oostatic Factor (TMOF) and combinations of TMOF with Bacillus thuringiensis against Aedes aegypti larvae in the laboratory. Iran J Arthropod-Borne Dis 2011, 5:13-19.
  • [33]Saboia-Vahia L, Borges-Veloso A, Cuervo P, Junqueira M, Mesquita-Rodrigues C, Britto C, Domont GB, De Jesus JB: Protein expression in the midgut of sugar-fed Aedes albopictus females. Parasit Vectors 2012, 5:290.
  • [34]Galán JE, Pace J, Hayman MJ: Involvement of the epidermal growth factor receptor in the mammalian cells by Salmonella typhimurium. Nature 1992, 357:588-589.
  • [35]Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH: Open mass spectrometry search algorithm. J Proteome Res 2004, 3:958-964.
  • [36]Specht M, Kuhlgert S, Fufezan C, Hippler M: Proteomics to go: Proteomatic enables the user-friendly creation of versatile MS/MS data evaluation workflows. Bioinformatics 2011, 27:1183-1184.
  • [37]Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23:1282-1288.
  • [38]Ho BC, Khoo HG, Chew LM, Wong KP, Ewert A: Food ingestion and digestive enzymes in larval Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 1992, 29:960-964.
  • [39]Yang YJ, Davies D: Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 1971, 17:117-131.
  • [40]Borovsky D, Meola SM: Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Arch Insect Biochem Physiol 2004, 55:124-139.
  • [41]Muhlia-Almazán A, Sánchez-Paz A, García-Carreño F: Invertebrate trypsins: a review. J Comp Physiol B 2008, 178:655-672.
  • [42]Fazito-do-Vale V, Pereira MH, Gontijo NF: Midgut pH profile and protein digestion in the larvae of Lutzomyia longipalpis (Diptera: Psychodidae). J Insect Physiol 2007, 53:1151-1159.
  • [43]Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Masini d’Avila Levy C, Alves-Honório N, Domont GB, De Jesus JB: Expression of Trypsin-like serine peptidases in préimaginal stages of Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 2011, 76:223-235.
  • [44]Tabouret G, Bret-Bennis L, Dorchies P, Jacquiet P: Serine protease activity in excretory-secretory products of Oestrus ovis (Diptera: Oestridae) larvae. Vet Parasitol 2003, 114:305-314.
  • [45]Pires FA, Moya-Borja GE, Barreira JD, Pinho RT, Alves CR: The main proteinases in Dermatobia hominis second and third instars larvae are serine-proteinases. Vet Parasitol 2007, 145:326-331.
  文献评价指标  
  下载次数:36次 浏览次数:30次