期刊论文详细信息
Molecular Neurodegeneration
In vivo functional brain mapping in a conditional mouse model of human tauopathy (taup301l) reveals reduced neural activity in memory formation structures
Naruhiko Sahara1  Marcelo Febo3  Jada Lewis1  Rachel M Bailey1  Yan Ren1  Tetsuya Kimura2  Gabrielle Hall3  Pablo D Perez3 
[1] Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA;Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu-shi, Aichi, 474-8511, Japan;Department of Psychiatry, University of Florida McKnight Brain Institute, Gainesville, Florida, 32610, USA
关键词: Manganese enhanced MRI;    rTg4510;    Alzheimer’s disease;    Neurodegenerative disease;    Tauopathy;   
Others  :  863276
DOI  :  10.1186/1750-1326-8-9
 received in 2012-09-18, accepted in 2013-01-18,  发布年份 2013
PDF
【 摘 要 】

Background

Tauopathies are characterized by intracellular deposition of the microtubule-associated protein tau as filamentous aggregates. The rTg4510 mouse conditionally expresses mutant human tau protein in various forebrain areas under the Tet-off expression system. Mice develop neurofibrillary tangles, with significant neuronal loss and cognitive deficits by 6 months of age. Previous behavioral and biochemical work has linked the expression and aggregates of mutant tau to functional impairments. The present work used manganese-enhanced magnetic resonance imaging (MEMRI) to investigate basal levels of brain activity in the rTg4510 and control mice.

Results

Our results show an unmistakable curtailment of neural activity in the amygdala and hippocampus, two regions known for their role in memory formation, but not the cortex, cerebellum, striatum and hypothalamus in tau expressing mice.

Conclusion

Behavioral impairments associated with changes in activity in these areas may correspond to age progressive mutant tauP301L-induced neurodegeneration.

【 授权许可】

   
2013 Perez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725033706810.pdf 1975KB PDF download
108KB Image download
77KB Image download
157KB Image download
203KB Image download
122KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lee VM, Goedert M, Trojanowski JQ: Neurodegenerative tauopathies. Annu Rev Neurosci 2001, 24:1121-1159.
  • [2]Swaab DF, Dubelaar EJ, Hofman MA, Scherder EJ, van Someren EJ, Verwer RW: Brain aging and Alzheimer’s disease; use it or lose it. Prog Brain Res 2002, 138:343-373.
  • [3]Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW: Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 2005, 1739:216-223.
  • [4]Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, et al.: Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000, 25:402-405.
  • [5]Gotz J, Chen F, Barmettler R, Nitsch RM: Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001, 276:529-534.
  • [6]Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, Yoshiike Y, Park JM, Matsuda K, Nakao S, et al.: Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 2001, 8:1036-1045.
  • [7]Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, et al.: Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002, 99:13896-13901.
  • [8]Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, et al.: Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002, 22:9340-9351.
  • [9]Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L: Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 2006, 169:599-616.
  • [10]Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007, 53:337-351.
  • [11]Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, et al.: The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 2007, 282:31755-31765.
  • [12]Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, et al.: Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005, 309:476-481.
  • [13]Spires-Jones TL, de Calignon A, Matsui T, Zehr C, Pitstick R, Wu HY, Osetek JD, Jones PB, Bacskai BJ, Feany MB, et al.: In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J Neurosci 2008, 28:862-867.
  • [14]de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT: Caspase activation precedes and leads to tangles. Nature 2010, 464:1201-1204.
  • [15]Pautler RG, Silva AC, Koretsky AP: In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998, 40:740-748.
  • [16]Aoki I, Tanaka C, Takegami T, Ebisu T, Umeda M, Fukunaga M, Fukuda K, Silva AC, Koretsky AP, Naruse S: Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 2002, 48:927-933.
  • [17]Pautler RG, Mongeau R, Jacobs RE: In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003, 50:33-39.
  • [18]Lee JH, Silva AC, Merkle H, Koretsky AP: Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn Reson Med 2005, 53:640-648.
  • [19]Aschner M, Gannon M: Manganese (Mn) transport across the rat blood–brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 1994, 33:345-349.
  • [20]Narita K, Kawasaki F, Kita H: Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990, 510:289-295.
  • [21]Fukuda J, Kawa K: Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science 1977, 196:309-311.
  • [22]Smith KD, Kallhoff V, Zheng H, Pautler RG: In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. NeuroImage 2007, 35:1401-1408.
  • [23]Kim J, Choi IY, Michaelis ML, Lee P: Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer’s disease using manganese-enhanced MRI. NeuroImage 2011, 56:1286-1292.
  • [24]Gallagher JJ, Zhang X, Ziomek GJ, Jacobs RE, Bearer EL: Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. NeuroImage 2012, 60:1856-1866.
  • [25]Yang D, Xie Z, Stephenson D, Morton D, Hicks CD, Brown TM, Sriram R, O’Neill S, Raunig D, Bocan T: Volumetric MRI and MRS provide sensitive measures of Alzheimer’s disease neuropathology in inducible Tau transgenic mice (rTg4510). NeuroImage 2011, 54:2652-2658.
  • [26]Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT: Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 2006, 168:1598-1607.
  • [27]Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, et al.: Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 2007, 27:3650-3662.
  • [28]Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M, Lewis J, Carlson G, et al.: Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 2005, 25:10637-10647.
  • [29]Sahara N, DeTure M, Ren Y, Ebrahim AS, Kang D, Knight J, Volbracht C, Pederson JT, Dickson DW, Yen SH, Lewis J: Characteristics of TBS-extractable hyperphosphorylated tau species: Aggregation intermediates in rTg4510 mouse brain. J Alzheim Dis 2013, 33:249-263.
  • [30]Barten DM, Cadelina GW, Hoque N, DeCarr LB, Guss VL, Yang L, Sankaranarayanan S, Wes PD, Flynn ME, Meredith JE, et al.: Tau transgenic mice as models for cerebrospinal fluid tau biomarkers. J Alzheimers Dis 2011, 24(2):127-141.
  • [31]Dickey C, Kraft C, Jinwal U, Koren J, Johnson A, Anderson L, Lebson L, Lee D, Dickson D, de Silva R, et al.: Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am J Pathol 2009, 174:228-238.
  • [32]Yu X, Wadghiri YZ, Sanes DH, Turnbull DH: In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 2005, 8:961-968.
  • [33]Kimura T, Yamashita S, Fukuda T, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N, Takashima A: Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. EMBO J 2007, 26:5143-5152.
  • [34]Rabin O, Hegedus L, Bourre JM, Smith QR: Rapid brain uptake of manganese(II) across the blood–brain barrier. J Neurochem 1993, 61:509-517.
  • [35]Sloot WN, Gramsbergen JB: Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994, 657:124-132.
  • [36]Liu CH, D’Arceuil HE, de Crespigny AJ: Direct CSF injection of MnCl(2) for dynamic manganese-enhanced MRI. Magn Reson Med 2004, 51:978-987.
  • [37]Cross DJ, Minoshima S, Anzai Y, Flexman JA, Keogh BP, Kim Y, Maravilla KR: Statistical mapping of functional olfactory connections of the rat brain in vivo. NeuroImage 2004, 23:1326-1335.
  • [38]Smith SM: Flexible filter neighbourhood designation. Proc 13th Int Conf on Pattern Recognition 1996, 1:206-212.
  • [39]Jenkinson M, Bannister P, Brady M, Smith S: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 2002, 17:825-841.
  • [40]Chen XJ, Kovacevic N, Lobaugh NJ, Sled JG, Henkelman RM, Henderson JT: Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI. NeuroImage 2006, 29:99-105.
  • [41]Paxinos G, Franklin KBJ: The mouse brain: in stereotaxic coordinates. 2nd edition. San Diego: Academic Press; 2001.
  文献评价指标  
  下载次数:0次 浏览次数:12次