| Respiratory Research | |
| Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis | |
| Lieven J Dupont1  Maarten LATM Hertog4  Bart M Nicolai4  Johan Van Eldere3  Thomas Vandendriessche4  Pieter C Goeminne2  | |
| [1] Department of Lung Disease, UZ Leuven, Leuven, Belgium;Pulmonary Medicine, University Hospital Gasthuisberg, Herestraat 49, Leuven, B-3000, Belgium;Department of Microbiology, UZ Leuven, Leuven, Belgium;Biosyst-MeBios, University of Leuven, Leuven, Belgium | |
| 关键词: Non-cystic fibrosis; Cystic fibrosis; Gas chromatography mass spectrometry; Chronic colonization; Bronchiectasis; | |
| Others : 796642 DOI : 10.1186/1465-9921-13-87 |
|
| received in 2012-07-18, accepted in 2012-09-27, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Introduction
Chronic pulmonary infection is the hallmark of Cystic Fibrosis lung disease. Searching for faster and easier screening may lead to faster diagnosis and treatment of Pseudomonas aeruginosa (P. aeruginosa). Our aim was to analyze and build a model to predict the presence of P. aeruginosa in sputa.
Methods
Sputa from 28 bronchiectatic patients were used for bacterial culturing and analysis of volatile compounds by gas chromatography–mass spectrometry. Data analysis and model building were done by Partial Least Squares Regression Discriminant analysis (PLS-DA). Two analysis were performed: one comparing P. aeruginosa positive with negative cultures at study visit (PA model) and one comparing chronic colonization according to the Leeds criteria with P. aeruginosa negative patients (PACC model).
Results
The PA model prediction of P. aeruginosa presence was rather poor, with a high number of false positives and false negatives. On the other hand, the PACC model was stable and explained chronic P. aeruginosa presence for 95% with 4 PLS-DA factors, with a sensitivity of 100%, a positive predictive value of 86% and a negative predictive value of 100%.
Conclusion
Our study shows the potential for building a prediction model for the presence of chronic P. aeruginosa based on volatiles from sputum.
【 授权许可】
2012 Goeminne et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705235636324.pdf | 445KB | ||
| Figure 4. | 51KB | Image | |
| Figure 3. | 23KB | Image | |
| Figure 2. | 22KB | Image | |
| Figure 1. | 22KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Konstan MW, Morgan WJ, Butler SM, Pasta DJ, Craib ML, Silva SJ, Stokes DC, Wohl ME, Wagener JS, Regelmann WE, Johnson CA: Scientific advisory group and the investigators and coordinators of the epidemiologic study of cystic fibrosis. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007, 151:134-139.
- [2]McPhail GL, Acton JD, Fenchel MC, Amin RS, Seid M: Improvements in lung function outcomes in children with cystic fibrosis are associated with better nutrition, fewer chronic pseudomonas aeruginosa infections, and dornase alfa use. J Pediatr 2008, 153:752-757.
- [3]Kerem E, Corey M, Gold R, Levison H: Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. J Pediatr 1990, 116:714-719.
- [4]Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL: Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002, 34:91-100.
- [5]Kozlowska WJ, Bush A, Wade A, Aurora P, Carr SB, Castle RA, Hoo AF, Lum S, Price J, Ranganathan S, Saunders C, Stanojevic S, Stroobant J, Wallis C, Stocks J: London cystic fibrosis collaboration. Lung function from infancy to the preschool years after clinical diagnosis of cystic fibrosis. Am J Respir Crit Care Med 2008, 178:42-49.
- [6]Pamukcu A, Bush A, Buchdahl R: Effects of pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol 1995, 19:10-15.
- [7]Kosorok MR, Zeng L, West SE, Rock MJ, Splaingard ML, Laxova A, Green CG, Collins J, Farrell PM: Acceleration of lung disease in children with cystic fibrosis after pseudomonas aeruginosa acquisition. Pediatr Pulmonol 2001, 32:277-287.
- [8]Henry RL, Mellis CM, Petrovic L: Mucoid pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 1992, 12:158-161.
- [9]Courtney JM, Bradley J, Mccaughan J, O’Connor TM, Shortt C, Bredin CP, Bradbury I, Elborn JS: Predictors of mortality in adults with cystic fibrosis. Pediatr Pulmonol 2007, 42:525-532.
- [10]Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, Hiatt P, McCoy K, Castile R, Smith AL, Ramsey BW: Longitudinal assessment of pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001, 183:444-452.
- [11]Hansen CR, Pressler T, Hoiby N: Early aggressive eradication therapy for intermittent pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cyst Fibros 2008, 7:523-530.
- [12]Armstrong DS, Grimwood K, Carlin JB, Carzino R, Olinsky A, Phelan PD: Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 1996, 21:267-275.
- [13]Endeman H, Schelfhout V, Voorn GP, van Velzen-Blad H, Grutters JC, Biesma DH: Clinical features predicting failure of pathogen identification in patients with community acquired pneumonia. Scand J Infect Dis 2008, 40:715-720.
- [14]Terpstra WJ, Schoone GJ, Ter SJ, van Nierop JC, Griffioen RW: In situ hybridization for the detection of haemophilus in sputum of patients with cystic fibrosis. Scand J Infect Dis 1987, 19:641-646.
- [15]Verenkar MP, Pinto MJ, Savio R, Virginkar N, Singh I: Bacterial pneumonias–evaluation of various sputum culture methods. J Postgrad Med 1993, 39:60-62.
- [16]Pressler T, Bohmova C, Conway S, Dumcius S, Hjelte L, Høiby N, Kollberg H, Tümmler B, Vavrova V: Chronic pseudomonas aeruginosa infection definition: EuroCareCF working group report. J Cyst Fibros 2011, 10:S75-S78.
- [17]Pasteur MC, Bilton D, Hill AT: British Thoracic Society guideline for non-CF bronchiectasis. Thorax 2010, 65:i1-i58.
- [18]Enderby B, Smith D, Carroll W, Lenney W: Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatr Pulmonol 2009, 44:142-147.
- [19]Robroeks CM, van Berkel JJ, Dallinga JW, Jöbsis Q, Zimmerman LJ, Hendriks HJ, Wouters MF, van der Grinten CP, van de Kant KD, van Schooten FJ, Dompeling E: Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 2010, 68:75-80.
- [20]Shestivska V, Nemec A, Dřevínek P, Sovová K, Dryahina K, Spaněl P: Quantification of methyl thiocyanate in the headspace of pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 2011, 25:2459-2467.
- [21]Allardyce RA, Langford VS, Hill AL, Murdoch DR: Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 2006, 65:361-365.
- [22]Carroll W, Lenney W, Wang T, Spanel P, Alcock A, Smith D: Detection of volatile compounds emitted by pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr Pulmonol 2005, 39:452-456.
- [23]Gilchrist FJ, Alcock A, Belcher J, Brady M, Jones A, Smith D, Spaněl P, Webb K, Lenney W: Variation in hydrogen cyanide production between different strains of pseudomonas aeruginosa. Eur Respir J 2011, 38:409-414.
- [24]Thorn RM, Reynolds DM, Greenman J: Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 2011, 84:258-264.
- [25]Zhu J, Bean HD, Kuo YM, Hill JE: Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J Clin Microbiol 2010, 48:4426-4431.
- [26]Zechman JM, Labows JN Jr: Volatiles of Pseudomonas aeruginosa and related species by automated headspace concentration–gas chromatography. Can J Microbiol 1985, 31:232-237.
- [27]Cox CD, Parker J: Use of 2-aminoacetophenone production in identification of pseudomonas aeruginosa. J Clin Microbiol 1979, 9:479-484.
- [28]Labows JN, McGinley KJ, Webster GF, Leyden JJ: Headspace analysis of volatile metabolites of pseudomonas aeruginosa and related species by gas chromatography–mass spectrometry. J Clin Microbiol 1980, 12:521-526.
- [29]Wang T, Carroll W, Lenny W, Boit P, Smith D: The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 2006, 20:125-130.
- [30]Preti G, Thaler E, Hanson CW, Troy M, Eades J, Gelperin A: Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877:2011-2018.
- [31]Savelev SU, Perry JD, Bourke SJ, Jary H, Taylor R, Fisher AJ, Corris PA, Petrie M, De Soyza A: Volatile biomarkers of pseudomonas aeruginosa in cystic fibrosis and noncystic fibrosis bronchiectasis. Lett Appl Microbiol 2011, 52:610-613.
- [32]Lee TW, Brownlee KG, Conway SP, Denton M, Littlewood JM: Evaluation of a new definition for chronic pseudomonas aeruginosa infection in cystic fibrosis patients. J Cyst Fibros 2003, 2:29-34.
- [33]Vandendool H, Kratz PD: A generalization of the retention index system including linear temperature programmed gas-liquide partition chromatography. J Chromatogr 1963, 11:463-471.
- [34]Ooms K: Identification of potentially causal regressors in PLS models. Dissertation: International Study Program in Statistics. KUL; 1996.
- [35]Horvath I, Hunt J, Barnes PJ, et al.: Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 2005, 26:523-548.
- [36]Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI: Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 2009, 64:744-748.
- [37]Buszewski B, Kesy M, Ligor T, Amann A: Human exhaled air analytics: biomarkers of disease. Biomed Chromatogr 2007, 21:553-566.
- [38]Vandendriessche T, Keulemans J, Geeraerd A, Nicolai BM, Hertog MLATM: Evaluation of fast volatile analysis for detection of botrytis cinerea infections in strawberry. Food Microbiol 2012, 32:406-14.
- [39]Wang T, Pysanenko A, Dryahina K, Spaněl P, Smith D: Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J Breath Res 2008, 2:037013.
- [40]Hansen SK, Rau MH, Johansen HK, Ciofu O, Jelsbak L, Yang L, Folkesson A, Jarmer HØ, Aanæs K, von Buchwald C, Høiby N, Molin S: Evolution and diversification of pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J 2012, 6:31-45.
PDF