期刊论文详细信息
Nutrition & Metabolism
Carnitine supplementation to obese Zucker rats prevents obesity-induced type I to type II muscle fiber transition and favors an oxidative phenotype of skeletal muscle
Klaus Eder2  Erika Most2  Karsten Krüger1  Frank-Christoph Mooren1  Robert Ringseis2  Aline Couturier2 
[1] Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany;Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
关键词: Fatty acid oxidation;    Oxidative capacity;    Type I fiber;    Muscle fiber transition;    Zucker rat;    Carnitine;   
Others  :  803326
DOI  :  10.1186/1743-7075-10-48
 received in 2013-04-16, accepted in 2013-06-29,  发布年份 2013
PDF
【 摘 要 】

Background

In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II.

Methods

24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined.

Results

The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05).

Conclusion

The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes.

【 授权许可】

   
2013 Couturier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708040218473.pdf 642KB PDF download
Figure 3. 51KB Image download
Figure 2. 77KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Pette D, Staron RS: Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990, 116:1-76.
  • [2]Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE: Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 1972, 11:2627-2633.
  • [3]Barnard RJ, Edgerton VR, Furukawa T, Peter JB: Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol 1971, 220:410-414.
  • [4]Cassano P, Sciancalepore AG, Pesce V, Flück M, Hoppeler H, Calvani M, Mosconi L, Cantatore P, Gadaleta MN: Acetyl-L-carnitine feeding to unloaded rats triggers in soleus muscle the coordinated expression of genes involved in mitochondrial biogenesis. Biochim Biophys Acta 2006, 1757:1421-1428.
  • [5]Pesce V, Fracasso F, Musicco C, Lezza AMS, Cantatore P, Gadaleta MN: Acetyl-L-carnitine dietary supplementation to old rats increases mitochondrial transcription factor A content in rat hind limb skeletal muscles. Ann N Y Acad Sci 2004, 1019:430-433.
  • [6]Fujita N, Nagatomo F, Murakami S, Kondo H, Ishihara A, Fujino H: Effects of hyperbaric oxygen on metabolic capacity of the skeletal muscle in type 2 diabetic rats with obesity. ScientificWorldJournal 2012, 2012:637978.
  • [7]Nagatomo F, Fujino H, Kondo H, Gu N, Takeda I, Ishioka N, Tsuda K, Ishihara A: PGC-1α mRNA level and oxidative capacity of the plantaris muscle in rats with metabolic syndrome, hypertension, and type 2 diabetes. Acta Histochem Cytochem 2011, 44:73-80.
  • [8]Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH: Substrate profile in rat soleus muscle fibers after hind limb unloading and fatigue. J Appl Physiol 2000, 88:473-478.
  • [9]Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JRB, Newgard CB, Lopaschuk GD, Muoio DM: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008, 7:45-56.
  • [10]Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM: Carnitine insufficiency caused by aging and over nutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009, 284:22840-22852.
  • [11]Ringseis R, Mooren F, Keller J, Couturier A, Wen G, Hirche F, Stangl GI, Eder K, Krüger K: Regular endurance exercise improves the diminished hepatic carnitine status in mice fed a high-fat diet. Mol Nutr Food Res 2011, 55(Suppl 2):S193-S202.
  • [12]Moriggi M, Cassano P, Vasso M, Capitanio D, Fania C, Musicco C, Pesce V, Gadaleta MN, Gelfi C: A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-L-carnitine supplementation. Proteomics 2008, 8:3588-3604.
  • [13]Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, Muoio DM, Mynatt RL: Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia 2007, 50:824-832.
  • [14]Li D, Kang Q, Wang D: Constitutive co activator of peroxisome proliferator-activated receptor (PPARγ), a novel co activator of PPARγ that promotes adipogenesis. Mol Endocrinol 2007, 21:2320-2333.
  • [15]Evans RM, Barish GD, Wang Y: PPARs and the complex journey to obesity. Nat Med 2004, 10:355-361.
  • [16]Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN: Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 2000, 275:4545-4548.
  • [17]Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS: Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002, 296:349-352.
  • [18]Pette D, Staron RS: Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 2000, 50:500-509.
  • [19]Lin J, Wu H, Tarr PT, Zhang C, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002, 418:797-801.
  • [20]Olson EN, Williams RS: Remodeling muscles with calcineurin. Bioessays 2000, 22:510-519.
  • [21]Lin J, Handschin C, Spiegelman BM: Metabolic control through the PGC-1 family of transcription co activators. Cell Metab 2005, 1:361-370.
  • [22]Reeves PG, Nielsen FH, Fahey GC: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993, 123:1939-1951.
  • [23]Hämäläinen N, Pette D: The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem 1993, 41:733-743.
  • [24]Ringseis R, Rosenbaum S, Gessner DK, Herges L, Kubens JF, Mooren F, Krüger K, Eder K: Supplementing obese zucker rats with niacin induces the transition of glycolytic to oxidative skeletal muscle fibers. J Nutr 2013, 143:125-131.
  • [25]Ringseis R, Muschick A, Eder K: Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARα target genes in rat liver. J Nutr 2007, 137:77-83.
  • [26]Hirche F, Fischer M, Keller J, Eder K: Determination of carnitine, its short chain acyl esters and metabolic precursors trimethyllysine and gamma-butyrobetaine by quasi-solid phase extraction and MS/MS detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877:2158-2162.
  • [27]Keller J, Ringseis R, Koc A, Lukas I, Kluge H, Eder K: Supplementation with l-carnitine down regulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 2012, 6:70-78.
  • [28]Ringseis R, Keller J, Eder K: Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 2012, 51:1-18.
  • [29]Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Järvinen H, Christin L, Secomb TW, Bogardus C: Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 1987, 80:415-424.
  • [30]Hickey MS, Carey JO, Azevedo JL, Houmard JA, Pories WJ, Israel RG, Dohm GL: Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 1995, 268:E453-E457.
  • [31]Mårin P, Andersson B, Krotkiewski M, Björntorp P: Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 1994, 17:382-386.
  • [32]Kriketos AD, Pan DA, Lillioja S, Cooney GJ, Baur LA, Milner MR, Sutton JR, Jenkins AB, Bogardus C, Storlien LH: Interrelationships between muscle morphology, insulin action, and adiposity. Am J Physiol 1996, 270:R1332-R1339.
  • [33]De Palo E, Gatti R, Sicolo N, Padovan D, Vettor R, Federspil G: Plasma and urine free L-carnitine in human diabetes mellitus. Acta Diabetol Lat 1981, 18:91-95.
  • [34]Winter Winter SC, Simon M, Zorn EM, Szabo-Aczel S, Vance WH, O’Hara T, Higashi L: Relative carnitine insufficiency in children with type I diabetes mellitus. Am J Dis Child 1989, 143:1337-1339.
  • [35]Poorabbas Poorabbas A, Fallah F, Bagdadchi J, Mahdavi R, Aliasgarzadeh A, Asadi Y, Koushavar H, Vahed Jabbari M: Determination of free L-carnitine levels in type II diabetic women with and without complications. Eur J Clin Nutr 2007, 61:892-895.
  • [36]Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, Didonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL: Intestinal micro biota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013, 19:576-585.
  • [37]Broderick TL: ATP production and TCA activity are stimulated by propionyl-L-carnitine in the diabetic rat heart. Drugs R&D 2008, 9:83-91.
  • [38]Broderick TL, Haloftis G, Paulson DJ: L-propionylcarnitine enhancement of substrate oxidation and mitochondrial respiration in the diabetic rat heart. J Mol Cell Cardiol 1996, 28:331-340.
  • [39]Liang Y, Li Y, Shan J, Yu B, Ho Z: The effect of oral L-carnitine treatment on blood lipid metabolism and the body fat content in the diabetic patient. Asia Pacific J Clin Nutr 1998, 7:192-195.
  • [40]Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N: PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 2006, 291:E807-E816.
  • [41]Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM: The transcriptional co activator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 2007, 5:35-46.
  • [42]van der Vusse GJ, van Bilsen M, Glatz JF: Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 2000, 45:279-293.
  • [43]Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Ylä-Herttuala S, Lindahl P, Eriksson U: Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010, 464:917-921.
  文献评价指标  
  下载次数:13次 浏览次数:12次