期刊论文详细信息
Molecular Pain
β-arrestin-2-biased agonism of delta opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) in primary sensory neurons
Nathaniel A Jeske2  Michael A Henry1  Ruben Gomez3  Allison P Doyle4  Kalina Szteyn3  Matthew P Rowan3 
[1] Departments of Endodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;Departments of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;Departments of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, MC 7908, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA;Departments of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
关键词: Hyperalgesia;    Allodynia;    Opioid;    Chronic pain;   
Others  :  1161778
DOI  :  10.1186/1744-8069-10-50
 received in 2014-06-06, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Despite advances in understanding the signaling mechanisms involved in the development and maintenance of chronic pain, the pharmacologic treatment of chronic pain has seen little advancement. Agonists at the mu opioid receptor (MOPr) continue to be vital in the treatment of many forms of chronic pain, but side-effects limit their clinical utility and range from relatively mild, such as constipation, to major, such as addiction and dependence. Additionally, chronic activation of MOPr results in pain hypersensitivity known as opioid-induced hyperalgesia (OIH), and we have shown recently that recruitment of β-arrestin2 to MOPr, away from transient potential vanilloid eceptor type 1 (TRPV1) in primary sensory neurons contributes to this phenomenon. The delta opioid receptor (DOPr) has become a promising target for the treatment of chronic pain, but little is known about the effects of chronic activation of DOPr on nociceptor sensitivity and OIH. Here we report that chronic activation of DOPr by the DOPr-selective agonist, SNC80, results in the sensitization of TRPV1 and behavioral signs of OIH via β-arrestin2 recruitment to DOPr and away from TRPV1. Conversely, chronic treatment with ARM390, a DOPr-selective agonist that does not recruit β-arrestin2, neither sensitized TRPV1 nor produced OIH. Interestingly, the effect of SNC80 to sensitize TRPV1 is species-dependent, as rats developed OIH but mice did not. Taken together, the reported data identify a novel side-effect of chronic administration of β-arrestin2-biased DOPr agonists and highlight the importance of potential species-specific effects of DOPr agonists.

【 授权许可】

   
2014 Rowan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413042107297.pdf 1332KB PDF download
Figure 6. 42KB Image download
Figure 5. 68KB Image download
Figure 4. 38KB Image download
Figure 3. 111KB Image download
Figure 2. 85KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ: Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013, 65:223-254.
  • [2]Angst MS, Clark JD: Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 2006, 104:570-587.
  • [3]Chen Y, Yang C, Wang ZJ: Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. J Neurosci 2010, 30:38-46.
  • [4]Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A: Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 2010, 30:12806-12815.
  • [5]Elhabazi K, Trigo JM, Mollereau C, Mouledous L, Zajac JM, Bihel F, Schmitt M, Bourguignon JJ, Meziane H, Petit-demouliere B, Bockel F, Maldonado R, Simonin F: Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br J Pharmacol 2012, 165:424-435.
  • [6]Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill CM, Salter MW, De Koninck Y: Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(−) homeostasis. Nat Neurosci 2013, 16:183-192.
  • [7]Krishnan S, Salter A, Sullivan T, Gentgall M, White J, Rolan P: Comparison of pain models to detect opioid-induced hyperalgesia. J Pain Res 2012, 5:99-106.
  • [8]Li X, Angst MS, Clark JD: A murine model of opioid-induced hyperalgesia. Brain Res Mol Brain Res 2001, 86:56-62.
  • [9]Lian B, Vera-Portocarrero L, King T, Ossipov MH, Porreca F: Opioid-induced latent sensitization in a model of non-inflammatory viscerosomatic hypersensitivity. Brain Res 2010, 1358:64-70.
  • [10]Liang DY, Liao G, Wang J, Usuka J, Guo Y, Peltz G, Clark JD: A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 2006, 104:1054-1062.
  • [11]Mao J, Price DD, Mayer DJ: Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 1994, 14:2301-2312.
  • [12]Minville V, Fourcade O, Girolami JP, Tack I: Opioid-induced hyperalgesia in a mice model of orthopaedic pain: preventive effect of ketamine. Br J Anaesth 2010, 104:231-238.
  • [13]Vardanyan A, Wang R, Vanderah TW, Ossipov MH, Lai J, Porreca F, King T: TRPV1 receptor in expression of opioid-induced hyperalgesia. J Pain 2009, 10:243-252.
  • [14]Zollner C, Mousa SA, Fischer O, Rittner HL, Shaqura M, Brack A, Shakibaei M, Binder W, Urban F, Stein C, Schafer M: Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J Clin Investig 2008, 118:1065-1073.
  • [15]Chu LF, Angst MS, Clark D: Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain 2008, 24:479-496.
  • [16]DuPen A, Shen D, Ersek M: Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manag Nurs 2007, 8:113-121.
  • [17]Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L: A comprehensive review of opioid-induced hyperalgesia. Pain Physician 2011, 14:145-161.
  • [18]Low Y, Clarke CF, Huh BK: Opioid-induced hyperalgesia: a review of epidemiology, mechanisms and management. Singapore Med J 2012, 53:357-360.
  • [19]Ramasubbu C, Gupta A: Pharmacological treatment of opioid-induced hyperalgesia: a review of the evidence. J Pain Palliat Care Pharmacother 2011, 25:219-230.
  • [20]Zhao YL, Chen SR, Chen H, Pan HL: Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem 2012, 287:25073-25085.
  • [21]Rowan MP, Bierbower SM, Eskander MA, Szteyn K, Por ED, Gomez R, Veldhuis N, Bunnett NW, Jeske NA: Activation of Mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) via beta-arrestin-2-mediated cross-talk. PLoS ONE 2014, 9:e93688.
  • [22]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816-824.
  • [23]Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998, 21:531-543.
  • [24]Tominaga M, Tominaga T: Structure and function of TRPV1. Pflugers Arch 2005, 451:143-150.
  • [25]Wang Y: The functional regulation of TRPV1 and its role in pain sensitization. Neurochem Res 2008, 33:2008-2012.
  • [26]Lefkowitz RJ, Rajagopal K, Whalen EJ: New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 2006, 24:643-652.
  • [27]Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ: Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 2010, 285:30115-30125.
  • [28]Por ED, Bierbower SM, Berg KA, Gomez R, Akopian AN, Wetsel WC, Jeske NA: beta-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J Biol Chem 2012, 287:37552-37563.
  • [29]Gaveriaux-Ruff C, Kieffer BL: Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav Pharmacol 2011, 22:405-414.
  • [30]Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL: The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 2011, 32:581-590.
  • [31]van Rijn RM, Defriel JN, Whistler JL: Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013, 228:1-18.
  • [32]Vanderah TW: Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 2010, 26(Suppl 10):S10-S15.
  • [33]Bie B, Pan ZZ: Trafficking of central opioid receptors and descending pain inhibition. Mol Pain 2007, 3:37.
  • [34]Cahill CM, Holdridge SV, Morinville A: Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 2007, 28:23-31.
  • [35]Cowan A, Zhu XZ, Mosberg HI, Omnaas JR, Porreca F: Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther 1988, 246:950-955.
  • [36]Zhang X, Bao L, Guan JS: Role of delivery and trafficking of delta-opioid peptide receptors in opioid analgesia and tolerance. Trends Pharmacol Sci 2006, 27:324-329.
  • [37]Jutkiewicz EM: The antidepressant -like effects of delta-opioid receptor agonists. Mol Interv 2006, 6:162-169.
  • [38]Leo RJ: Chronic pain and comorbid depression. Curr Treat Options Neurol 2005, 7:403-412.
  • [39]Scherrer G, Imamachi N, Cao YQ, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI: Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 2009, 137:1148-1159.
  • [40]Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ: Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 2009, 106:9075-9080.
  • [41]Normandin A, Luccarini P, Molat JL, Gendron L, Dallel R: Spinal mu and delta opioids inhibit both thermal and mechanical pain in rats. J Neurosci 2013, 33:11703-11714.
  • [42]Berg KA, Rowan MP, Gupta A, Sanchez TA, Silva M, Gomes I, McGuire BA, Portoghese PS, Hargreaves KM, Devi LA, Clarke WP: Allosteric interactions between delta and kappa opioid receptors in peripheral sensory neurons. Mol Pharmacol 2012, 81:264-272.
  • [43]Rowan MP, Ruparel NB, Patwardhan AM, Berg KA, Clarke WP, Hargreaves KM: Peripheral delta opioid receptors require priming for functional competence in vivo. Eur J Pharmacol 2009, 602:283-287.
  • [44]Saloman JL, Niu KY, Ro JY: Activation of peripheral delta-opioid receptors leads to anti-hyperalgesic responses in the masseter muscle of male and female rats. Neuroscience 2011, 190:379-385.
  • [45]Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A: Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther 1989, 248:1269-1275.
  • [46]Fristad I, Berggreen E, Haug SR: Delta (delta) opioid receptors in small and medium-sized trigeminal neurons supporting the dental pulp of rats. Arch Oral Biol 2006, 51:273-281.
  • [47]Chen SR, Pan HL: Removing TRPV1-expressing primary afferent neurons potentiates the spinal analgesic effect of delta-opioid agonists on mechano-nociception. Neuropharmacology 2008, 55:215-222.
  • [48]Pierce KL, Lefkowitz RJ: Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2001, 2:727-733.
  • [49]Qiu Y, Loh HH, Law PY: Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 2007, 282:22315-22323.
  • [50]Reiter E, Ahn S, Shukla AK, Lefkowitz RJ: Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 2012, 52:179-197.
  • [51]Shukla AK, Xiao K, Lefkowitz RJ: Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 2011, 36:457-469.
  • [52]Zuo Z: The role of opioid receptor internalization and beta-arrestins in the development of opioid tolerance. Anesth Analg 2005, 101:728-734. table of contents
  • [53]Charfi I, Nagi K, Mnie-Filali O, Thibault D, Balboni G, Schiller PW, Trudeau LE, Pineyro G: Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists. Cell Mol Life Sci 2014, 71:1529-1546.
  • [54]Marie N, Landemore G, Debout C, Jauzac P, Allouche S: Pharmacological characterization of AR-M1000390 at human delta opioid receptors. Life Sci 2003, 73:1691-1704.
  • [55]Pradhan AA, Becker JA, Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Massotte D, Gaveriaux-Ruff C, Kieffer BL: In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS ONE 2009, 4:e5425.
  • [56]Audet N, Charfi I, Mnie-Filali O, Amraei M, Chabot-Dore AJ, Millecamps M, Stone LS, Pineyro G: Differential association of receptor-Gbetagamma complexes with beta-arrestin2 determines recycling bias and potential for tolerance of delta opioid receptor agonists. J Neurosci 2012, 32:4827-4840.
  • [57]Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer BL: Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 2010, 30:16459-16468.
  • [58]Chaudhury S, Bal M, Belugin S, Shapiro MS, Jeske NA: AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin. Mol Pain 2011, 7:34.
  • [59]Diogenes A, Patwardhan AM, Jeske NA, Ruparel NB, Goffin V, Akopian AN, Hargreaves KM: Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci 2006, 26:8126-8136.
  • [60]Por ED, Gomez R, Akopian AN, Jeske NA: Phosphorylation regulates TRPV1 association with beta-arrestin-2. Biochem J 2013, 451:101-109.
  • [61]Por ED, Samelson BK, Belugin S, Akopian AN, Scott JD, Jeske NA: PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150. Biochem J 2010, 432:549-556.
  • [62]Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32:77-88.
  • [63]Patil MJ, Belugin S, Akopian AN: Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses. J Neurosci Res 2011, 89:945-954.
  • [64]Zeitelhofer M, Vessey JP, Xie Y, Tubing F, Thomas S, Kiebler M, Dahm R: High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2007, 2:1692-1704.
  • [65]Henry MA, Freking AR, Johnson LR, Levinson SR: Increased sodium channel immunofluorescence at myelinated and demyelinated sites following an inflammatory and partial axotomy lesion of the rat infraorbital nerve. Pain 2006, 124:222-233.
  • [66]Ruparel S, Henry MA, Akopian A, Patil M, Zeldin DC, Roman L, Hargreaves KM: Plasticity of cytochrome P450 isozyme expression in rat trigeminal ganglia neurons during inflammation. Pain 2012, 153:2031-2039.
  • [67]Wu ZZ, Chen SR, Pan HL: Differential sensitivity of N- and P/Q-type Ca2+ channel currents to a mu opioid in isolectin B4-positive and -negative dorsal root ganglion neurons. J Pharmacol Exp Ther 2004, 311:939-947.
  文献评价指标  
  下载次数:61次 浏览次数:23次