期刊论文详细信息
Molecular Cytogenetics
Chromosome 15q11-q13 copy number gain detected by array-CGH in two cases with a maternal methylation pattern
Ene-Choo Tan4  Maggie SY Brett2  Zhi-hui Li5  Eileen CP Lim2  Min-Hwee Yong3  Ee-Shien Tan1 
[1] Genetics Service, KK Women’s & Children’s Hospital, 100 Bukit Timah Road 229899 Singapore, Singapore;KK Research Laboratory, KK Women’s & Children’s Hospital, 100 Bukit Timah Road 229899 Singapore, Singapore;Cytogenetics Laboratory, KK Women’s & Children’s Hospital, 100 Bukit Timah Road 229899 Singapore, Singapore;Office of Clinical Sciences, Duke-NUS Graduate Medical School, 8 College Road 169857 Singapore, Singapore;Genomax Technologies Pte Ltd, 51 Science Park Road, #04-15 117586 Singapore, Singapore
关键词: Marker chromosome;    Fluorescence in situ hybridization (FISH);    Developmental delay;    Autism;    Copy number gain;    Array comparative genomic hybridization (aCGH);    15q duplication syndrome;   
Others  :  1150111
DOI  :  10.1186/1755-8166-7-32
 received in 2014-02-27, accepted in 2014-04-11,  发布年份 2014
PDF
【 摘 要 】

Background

The 15q11-q13 region contains many low copy repeats and is well known for its genomic instability. Several syndromes are associated with genomic imbalance or copy-number-neutral uniparental disomy. We report on two patients: Patient 1 is a boy with developmental delay and autism; and Patient 2 is a girl with developmental delay, hypotonia and dysmorphism. We performed analyses to delineate their dosage in the 15q region, determine whether the patients’ dosage correlates with phenotypic severity, and whether genes in the amplified regions are significantly associated with identified functional networks.

Results

For the proximal region of 15q, molecular cytogenetic analysis with Agilent oligonucleotide array showed a copy number of 3 for Patient 1 and a copy number of 4 for Patient 2. Fluorescent in situ hybridization analysis of Patient 2 showed two different populations of cells with different marker chromosomes. Methylation analysis of the amplified region showed that the extra copies of small nuclear ribonucleoprotein polypeptide N gene were of maternal origin. Phenotypic severity did not correlate with the size and dosage of 15q, or whether the amplification is interstitial or in the form of a supernumerary marker. Pathway analysis showed that in Patient 2, the main functional networks that are affected by the genes from the duplicated/triplicated regions are developmental disorder, neurological disease and hereditary disease.

Conclusions

The 15q11-q13 gains that were found in both patients could explain their phenotypic presentations. This report expands the cohort of patients for which 15q11-q13 duplications are molecularly characterized.

【 授权许可】

   
2014 Tan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405141654962.pdf 965KB PDF download
Figure 3. 91KB Image download
Figure 2. 94KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Pujana MA, Nadal M, Guitart M, Armengol L, Gratacos M, Estivill X: Human chromosome 15q11-q14 regions of rearrangements contain clusters of LCR15 duplicons. Eur J Hum Genet 2002, 10:26-35.
  • [2]Saadallah N, Hulten M: Chiasma distribution, genetic lengths, and recombination fractions: a comparison between chromosomes 15 and 16. J Med Genet 1983, 20:290-299.
  • [3]Cassidy SB, Schwartz S, Miller JL, Driscoll DJ: Prader-Willi syndrome. Genet Med 2012, 14:10-26.
  • [4]Battaglia A, Parrini B, Tancredi R: The behavioral phenotype of the idic(15) syndrome. Am J Med Genet C: Semin Med Genet 2010, 154C:448-455.
  • [5]Battaglia A: The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis 2008, 3:30. BioMed Central Full Text
  • [6]Wang NJ, Liu D, Parokonny AS, Schanen NC: High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 2004, 75:267-281.
  • [7]Yang J, Yang Y, Huang Y, Hu Y, Chen X, Sun H, Lv Z, Cheng Q, Bao L: A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC Med Genet 2013, 14:9.
  • [8]Browne CE, Dennis NR, Maher E, Long FL, Nicholson JC, Sillibourne J, Barber JC: Inherited interstitial duplications of proximal 15q: genotype-phenotype correlations. Am J Hum Genet 1997, 61:1342-1352.
  • [9]Cai G, Edelmann L, Goldsmith JE, Cohen N, Nakamine A, Reichert JG, Hoffman EJ, Zurawiecki DM, Silverman JM, Hollander E, Soorya L, Anagnostou E, Betancur C, Buxbaum JD: Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genomics 2008, 1:50. BioMed Central Full Text
  • [10]Kitsiou-Tzeli S, Tzetis M, Sofocleous C, Vrettou C, Xaidara A, Giannikou K, Pampanos A, Mavrou A, Kanavakis E: De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: Clinical description, array CGH analysis, and review of the literature. Am J Med Genet A 2010, 152A:1925-1932.
  • [11]Crespi BJ, Crofts HJ: Association testing of copy number variants in schizophrenia and autism spectrum disorders. J Neurodev Disord 2012, 4:15. BioMed Central Full Text
  • [12]de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, Trenite DK, Swinkels ME, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Moller RS, Hjalgrim H, De Jonghe P, et al.: Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010, 133:23-32.
  • [13]Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, Chaste P, Siffroi JP, Chantot-Bastaraud S, Benyahia B, Trouillard O, Nygren G, Kopp S, Johansson M, Rastam M, Burglen L, Leguern E, Verloes A, Leboyer M, Brice A, Gillberg C, Betancur C: Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry 2009, 66:349-359.
  • [14]Stewart LR, Hall AL, Kang SH, Shaw CA, Beaudet AL: High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy. BMC Med Genet 2011, 12:154. BioMed Central Full Text
  • [15]Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L: Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 2006, 11:1. 18–28
  • [16]Matsunami N, Hadley D, Hensel CH, Christensen GB, Kim C, Frackelton E, Thomas K, da Silva RP, Stevens J, Baird L, Otterud B, Ho K, Varvil T, Leppert T, Lambert CG, Leppert M, Hakonarson H: Identification of rare recurrent copy number variants in high-risk autism families and their prevalence in a large ASD population. PLoS One 2013, 8:e52239.
  • [17]Bassett AS, Scherer SW, Brzustowicz LM: Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry 2010, 167:899-914.
  • [18]Hosak L, Silhan P, Hosakova J: Genomic copy number variations: a breakthrough in our knowledge on schizophrenia etiology? Neuro Endocrinol Lett 2012, 33:183-190.
  • [19]Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, Cox GF, Dickinson H, Gentile J, Harris DJ, Hegde V, Hundley R, Khwaja O, Kothare S, Luedke C, Nasir R, Poduri A, Prasad K, Raffalli P, Reinhard A, Smith SE, Sobeih MM, Soul JS, Stoler J, Takeoka M, Tan WH, Thakuria J, Wolff R, Yusupov R, Gusella JF, et al.: Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 2009, 46:242-248.
  • [20]Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH, State MW, Martin CL, Ledbetter DH: Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry 2013, 18:1090-1095.
  • [21]Urraca N, Cleary J, Brewer V, Pivnick EK, McVicar K, Thibert RL, Schanen NC, Esmer C, Lamport D, Reiter LT: The Interstitial Duplication 15q11.2-q13 Syndrome includes Autism, mild facial anomalies and a characteristic EEG Signature. Autism Res 2013, 6:268-279.
  • [22]Burnside RD, Pasion R, Mikhail FM, Carroll AJ, Robin NH, Youngs EL, Gadi IK, Keitges E, Jaswaney VL, Papenhausen PR, Potluri VR, Risheg H, Rush B, Smith JL, Schwartz S, Tepperberg JH, Butler MG: Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum Genet 2011, 130:517-528.
  • [23]Tatton-Brown K, Pilz DT, Orstavik KH, Patton M, Barber JC, Collinson MN, Maloney VK, Huang S, Crolla JA, Marks K, Ormerod E, Thompson P, Nawaz Z, Lese-Martin C, Tomkins S, Waits P, Rahman N, McEntagart M: 15q overgrowth syndrome: a newly recognized phenotype associated with overgrowth, learning difficulties, characteristic facial appearance, renal anomalies and increased dosage of distal chromosome 15q. Am J Med Genet A 2009, 149A:147-154.
  • [24]Al Ageeli E, Drunat S, Delanoe C, Perrin L, Baumann C, Capri Y, Fabre-Teste J, Aboura A, Dupont C, Auvin S, El Khattabi L, Chantereau D, Moncla A, Tabet AC, Verloes A: Duplication of the 15q11-q13 region: clinical and genetic study of 30 new cases. Eur J Med Genet 2014, 57:5-14.
  • [25]Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, Schanen NC, LaSalle JM: Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 2009, 46:86-93.
  • [26]Wandstrat AE, Schwartz S: Isolation and molecular analysis of inv dup(15) and construction of a physical map of a common breakpoint in order to elucidate their mechanism of formation. Chromosoma 2000, 109:498-505.
  • [27]Biesecker LG, Spinner NB: A genomic view of mosaicism and human disease. Nat Rev Genet 2013, 14:307-320.
  • [28]Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM: 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum Mol Genet 2007, 16:691-703.
  • [29]Hedges DJ, Hamilton-Nelson KL, Sacharow SJ, Nations L, Beecham GW, Kozhekbaeva ZM, Butler BL, Cukier HN, Whitehead PL, Ma D, Jaworski JM, Nathanson L, Lee JM, Hauser SL, Oksenberg JR, Cuccaro ML, Haines JL, Gilbert JR, Pericak-Vance MA: Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. Mol Autism 2012, 3:2. BioMed Central Full Text
  • [30]Sridhar P, Gan HH, Schlick T: A computational screen for C/D box snoRNAs in the human genomic region associated with Prader-Willi and Angelman syndromes. J Biomed Sci 2008, 15:697-705.
  • [31]Galardi S, Fatica A, Bachi A, Scaloni A, Presutti C, Bozzoni I: Purified box C/D snoRNPs are able to reproduce site-specific 2'-O-methylation of target RNA in vitro. Mol Cell Biol 2002, 22:6663-6668.
  • [32]Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S: The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 2010, 19:1153-1164.
  • [33]Runte M, Varon R, Horn D, Horsthemke B, Buiting K: Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum Genet 2005, 116:228-230.
  • [34]Orrico A, Zollino M, Galli L, Buoni S, Marangi G, Sorrentino V: Late-onset Lennox-Gastaut syndrome in a patient with 15q11.2-q13.1 duplication. Am J Med Genet A 2009, 149A:1033-1035.
  • [35]Yunis JJ: High resolution of human chromosomes. Science 1976, 191:1268-1270.
  • [36]Hoebeeck J, van der Luijt R, Poppe B, De Smet E, Yigit N, Claes K, Zewald R, de Jong GJ, De Paepe A, Speleman F, Vandesompele J: Rapid detection of VHL exon deletions using real-time quantitative PCR. Lab Invest 2005, 85:24-33.
  • [37]Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH: Methylation-specific PCR simplifies imprinting analysis. Nat Genet 1997, 16:16-17.
  文献评价指标  
  下载次数:21次 浏览次数:28次