Nutrition & Metabolism | |
Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice | |
Futwan A Al-Mohanna1  Soad Saleh2  Rosario Ubungen2  Bernard L Andres2  Angela Inglis2  Marya Z Zaidi2  Nadine J Makhoul2  Kate S Collison2  | |
[1] College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia;Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia | |
关键词: Trans-hydrogenated fat; Monosodium glutamate; Aspartame; Liver; Adipose; Metabolic dysregulation; Nutrigenomics; Gene expression; | |
Others : 803390 DOI : 10.1186/1743-7075-10-44 |
|
received in 2013-02-04, accepted in 2013-06-03, 发布年份 2013 | |
【 摘 要 】
Background
The human diet has altered markedly during the past four decades, with the introduction of Trans hydrogenated fat, which extended the shelf-life of dietary oils and promoted a dramatic increase in elaidic acid (Trans-18.1) consumption. Food additives such as monosodium glutamate (MSG) and aspartame (ASP) were introduced to increase food palatability and reduce caloric intake. Nutrigenomics studies in small-animal models are an established platform for analyzing the interactions between various macro- and micronutrients. We therefore investigated the effects of changes in hepatic and adipose tissue gene expression induced by the food additives ASP, MSG or a combination of both additives in C57Bl/6 J mice fed a Trans fat-enriched diet.
Methods
Hepatic and adipose tissue gene expression profiles, together with body characteristics, glucose parameters, serum hormone and lipid profiles were examined in C57Bl/6 J mice consuming one of the following four dietary regimens, commencing in utero via the mother’s diet: [A] Trans fat (TFA) diet; [B] MSG + TFA diet; [C] ASP + TFA diet; [D] ASP + MSG + TFA diet.
Results
Whilst dietary MSG significantly increased hepatic triglyceride and serum leptin levels in TFA-fed mice, the combination of ASP + MSG promoted the highest increase in visceral adipose tissue deposition, serum free fatty acids, fasting blood glucose, HOMA-IR, total cholesterol and TNFα levels. Microarray analysis of significant differentially expressed genes (DEGs) showed a reduction in hepatic and adipose tissue PPARGC1a expression concomitant with changes in PPARGC1a-related functional networks including PPARα, δ and γ. We identified 73 DEGs common to both adipose and liver which were upregulated by ASP + MSG in Trans fat-fed mice; and an additional 51 common DEGs which were downregulated.
Conclusion
The combination of ASP and MSG may significantly alter adiposity, glucose homeostasis, hepatic and adipose tissue gene expression in TFA-fed C57Bl/6 J mice.
【 授权许可】
2013 Collison et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708040922500.pdf | 1582KB | download | |
Figure 4. | 17KB | Image | download |
Figure 3. | 187KB | Image | download |
Figure 2. | 190KB | Image | download |
Figure 1. | 175KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Ramsey-Stuart G: Hepatic steatosis and morbid obesity. Obes Surg 1993, 3(2):157-159.
- [2]Li Z, Soloski MJ, Diehl AM: Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 2005, 42(4):880-885.
- [3]Collison KS, Saleh SM, Bakheet RH, Al-Rabiah RK, Inglis AL, Makhoul NJ, Maqbool ZM, Zaidi MZ, Al-Johi MA, Al-Mohanna FA: Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55. Obesity (Silver Spring) 2009, 17(11):2003-2013.
- [4]Gauthier MS, Favier R, Lavoie JM: Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006, 95(2):273-281.
- [5]Bauer LR, Waldrop J: Trans fat intake in children: risks and recommendations. Pediatr Nurs 2009, 35(6):346-351.
- [6]Willett WC, Ascherio A: Fatty acids: are the effects only marginal? Am J Public Health 1995, 85(3):411-412.
- [7]Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD, Rudel LL: Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity 2007, 15:1675-1684.
- [8]Dorfman SE, Laurent D, Gounarides JS, Li X, Mullarkey TL, Rocheford EC, Sari-Sarraf F, Hirsch EA, Hughes TE, Commerford SR: Metabolic implications of dietary trans-fatty acids. Obesity (Silver Spring) 2009, 17(6):1200-1207.
- [9]Collison KS, Maqbool Z, Saleh SM, Inglis A, Makhoul NJ, Bakheet R, Al-Johi M, Al-Rabiah R, Zaidi MZ, Al-Mohanna FA: Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J Lipid Res 2009, 50(8):1521-1537.
- [10]Food ingredients and colors. International Food Information Council (IFIC) and U.S. Food and Drug Administration. 2004. revised April 2010 in: http://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm094211.htm webcite
- [11]McCabe C, Rolls ET: Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci 2007, 25(6):1855-1864.
- [12]Maher TJ, Wurtman RJ: Possible neurologic effects of aspartame, a widely used food additive. Environ Health Perspect 1987, 75:53-57.
- [13]Scalett AC, Onney JW: Components of hypothalamic obesity: bipiperidyl-mustard lesions add hyperphagia to monosodium glutamate-induced hyperinsulinemia. Brain Res 1986, 374(2):380-384.
- [14]Nemeroff CB, Lipton MA, Kizer JS: Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci 1978, 1(2):102-109.
- [15]Macho L, Ficková M, Jezová , Zórad S: Late effects of postnatal administration of monosodium glutamate on insulin action in adult rats. Physiol Res 2000, 49(Suppl 1):S79-S85.
- [16]Magariños AM, Estivariz F, Morado MI, De Nicola AF: Regulation of the central nervous system-pituitary-adrenal axis in rats after neonatal treatment with monosodium glutamate. Neuroendocrinology 1988, 48(2):105-111.
- [17]Fernandez-Tresguerres Hernández JA: Effect of monosodium glutamate given orally on appetite control (a new theory for the obesity epidemic). An R Acad Nac Med (Madr) 2005, 122(2):341-355.
- [18]Hermanussen M, García AP, Sunder M, Voigt M, Salazar V, Tresguerres JA: Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur J Clin Nut 2006, 60(1):25-31.
- [19]von Diemen V, Trindade MRM: Effect of oral administration of monosodium glutamate during pregnancy and breast-feeding in the offspring of pregnant Wistar rats. Acta Cirurg Brasil 2006, 25(1):37-42.
- [20]Yu T, Zhao Y, Shi W, Ma R, Yu L: Effects of maternal oral administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Brain Res 1997, 747(2):195-206.
- [21]Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, Takano Y, Iizuka S, Nagata M, Suzuki W, Shimada T, Aburada M, Nakano M, Selmi C, Gershwin ME: Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 2008, 30(1–2):42-50.
- [22]Liu C, Lin JD: PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai). 2011, 43(4):248-257.
- [23]Humphries P, Pretorius E, Naude H: Direct and indirect cellular effects of aspartame on the brain. Eur J Clin Nutr 2008, 62:451-462.
- [24]Abhilash M, Paul MV, Varghese MV, Nair RH: Effect of long term intake of aspartame on antioxidant defense status in liver. Food Chem Toxicol 2011, 49(6):1203-1207.
- [25]Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, Ubungen R, Shoukri M, Al-Mohanna FA: Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab (Lond) 2012, 9(1):58. BioMed Central Full Text
- [26]Fats and fatty acids in human nutrition. Report by an expert committee. FAO Food and Nutrition paper91 . 2008. http://www.fao.org/docrep/013/i1953e/i1953e00.pdf webcite
- [27]Dhibi M, Brahmi F, Mnari A, Houas Z, Chargui I, Bchir L, Gazzah N, Alsaif MA, Hammami M: The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats. Nutr Metab (Lond) 2011, 8(1):65. BioMed Central Full Text
- [28]Jackson AA, Burdge GC, Lillicrop KA: Diet, nutrition and modulation of genomic expression in fetal origins of adult disease. J Nutrigenet Nutrigenomics 2010, 3(4–6):192-208.
- [29]Grove KL, Grayson BE, Glavas MM, Xiao XQ, Smith MS: Development of metabolic systems. Physiol Behav 2005, 86:646-660.
- [30]Collison KS, Maqbool ZM, Inglis AL, Makhoul NJ, Saleh SM, Bakheet RH, Al-Johi MA, Al-Rabiah RK, Zaidi MZ, Al-Mohanna FA: Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: expression profiles in the liver and visceral fat. Obesity (Silver Spring) 2010, 8(6):1122-1134.
- [31]Fourteenth Report of the Joint FAO/WHO Expert Committee on Food Additives. 1971, 15. [FAO Nutrition Meetings Report Series No. 48, WHO Technical Report Series, No. 462]
- [32]Tschanz C, Butchko HH, Stargel WW, Kotsonis FN: The Clinical Evaluation of a Food Additive: Assessment of Aspartame. Boca Raton: CRC Press; 1996:308.
- [33]Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and ß-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28:412-419.
- [34]Wu ZL, Inizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004, 99:909-917.
- [35]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological) 1995, 57(1):289-300.
- [36]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003, 4(5):P3. BioMed Central Full Text
- [37]Cheng C, Kushner H, Falkner BE: The utility of fasting glucose for detection of prediabetes. Metabolism 2006, 55(4):434-438.
- [38]Collison KS, Makhoul NJ, Zaidi MZ, Saleh SM, Andres B, Inglis A, Al-Rabiah R, Al-Mohanna FA: Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity. PLoS One 2012, 7(4):e31570.
- [39]Yu W, Liang X, Ensenauer RE, Vockley J, Sweetman L, Schulz H: Leaky beta-oxidation of a trans-fatty acid: incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecenoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine in the matrix of rat mitochondria. J Biol Chem 2004, 279(50):52160-52167.
- [40]Hammarstedt A, Jansson PA, Wesslau C, Yang X, Smith U: Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun 2003, 301:578-582.
- [41]Gregoire FM: Adipocyte differentiation, from fibroblast to endocrine cell. Exp Biol Med 2001, 226(11):997-1002.
- [42]Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, Hausman GJ, Nettleton D, Anderson LL, Dekkers JC, Tuggle CK: Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am J Physiol Regul Integr Comp Physiol 2010, 298(2):R494-R507.
- [43]Szalowska E, Dijkstra M, Elferink MG, Weening D, de Vries M, Bruinenberg M, Hoek A, Roelofsen H, Groothuis GM, Vonk RJ: Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers. BMC Med Genomics 2011, 4:71. BioMed Central Full Text
- [44]Lee RK, Hittel DS, Nyamandi VZ, Kang L, Soh J, Sensen CW, Shearer J: Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues. Appl Physiol Nutr Metab 2012, 37(2):257-268.
- [45]Oh SY, Park SK, Kim JW, Ahn YH, Park SW, Kim KS: Acetyl-CoA carboxylase beta gene is regulated by sterol regulatory element-binding protein-1 in liver. J Biol Chem 2003, 278(31):28410-28417.
- [46]Zhao LF, Iwasaki Y, Zhe W, Nishiyama M, Taguchi T, Tsugita M, Kambayashi M, Hashimoto K, Terada Y: Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr J 2010, 57(4):317-324.
- [47]Vidal-Puig A, O’Rahilly S: Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 2004, 28:176-179.
- [48]Yoneda M, Hotta K, Nozaki Y, Endo H, Uchiyama T, Mawatari H, Iida H, Kato S, Hosono K, Fujita K, Yoneda K, Takahashi H, Kirikoshi H, Kobayashi N, Inamori M, Abe Y, Kubota K, Saito S, Maeyama S, Wada K, Nakajima A: Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol 2008, 8:27. BioMed Central Full Text
- [49]Ventura-Clapier R, Garnier A, Veksler V: Transcriptional control of mitochondrial biogenesis; the central role of PGC-1α. Cardioovascular Res 2008, 79:208-217.
- [50]Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, Espinoza D, Faucette R, Barry K, Bianco AC, Patti ME: Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem 2007, 282(21):15439-15450.
- [51]Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR: Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 2009, 10(3):189-198.
- [52]Ortiz GG, Bitzer-Quintero OK, Zárate CB, Rodríguez-Reynoso S, Larios-Arceo F, Velázquez-Brizuela IE, Pacheco-Moisés F, Rosales-Corral SA: Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed Pharmacother 2006, 0(2):86-91.
- [53]Bhattacharya T, Bhakta A, Ghosh SK: Long term effect of monosodium glutamate in liver of albino mice after neo-natal exposure. Nepal Med Coll J 2011, 13(1):11-16.
- [54]Ibrahim MA, Buhari GO, Aliyu AB, Yunusa I, Bisalla M: Amelioration of monosodium glutamate-induced hepatotoxicity by vitamin C. Eur J Sci Res 2011, 60(1):159-165.
- [55]Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO: Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys 2006, 43(1):20-24.
- [56]Farombi EO, Onyema OO: Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 2006, 25(5):251-259.
- [57]Eells JT, Makar AB, Noker PE, Tephly TR: Methanol poisoning and formate oxidation in nitrous oxide-treated rats. J Pharmacol Exp Ther 1981, 217(1):57-61.
- [58]Maddocks ODK, Vousden KH: Metabolic regulation by p53. J Mol Med 2011, 89:237-245.
- [59]Bazuine M, Stenkula KG, Cam M, Arroyo M, Cushman SW: Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. Clin Lipidol 2009, 4(2):231-243.
- [60]Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ: Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 1998, 17(2):554-564.
- [61]Murray MF, Jurewicz AJ, Martin JD, Ho TF, Zhang H, Johanson KO, Kirkpatrick RB, Ma J, Lor LA, Thrall SH, Schwartz B: A high-throughput screen measuring ubiquitination of p53 by human mdm2. J Biomol Screen 2007, 12(8):1050-1058.
- [62]Garcés C, Ruiz-Hidalgo MJ, Font de Mora J, Park C, Miele L, Goldstein J, Bonvini E, Porrás A, Laborda J: Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 1997, 272(47):29729-29734.
- [63]Groth C, Fortini ME: Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin Cell Dev Biol 2012, 23(4):465-472.
- [64]Pajvani UB, Shawber CJ, Samuel VT, Birkenfeld AL, Shulman GI, Kitajewski J, Accili D: Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat Med 2011, 172(8):961-967.
- [65]Dill MT, Rothweiler S, Djonov V, Hlushchuk R, Tornillo L, Terracciano L, Meili-Butz S, Radtke F, Heim MH, Semela D: Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 2012, 142(4):967-977. e2